Write your name here Surname	Ot	ther names		
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number		
Physics Advanced Subsidiary Unit 3: Exploring Physics				
Wednesday 9 May 2018 – A Time: 1 hour 20 minutes		Paper Reference WPH03/01		
You must have: Ruler		Total Marks		

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 40.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL questions.

For questions 1–5, in Section A, select one answer from A to D and put a cross in the box ⊠. If you change your mind put a line through the box ⋈ and then mark your new answer with a cross ⋈.

- 1 Which of the following is an SI base quantity?
 - A ampère
 - B charge
 - C current
 - \square **D** volt

(Total for Question 1 = 1 mark)

2 In an experiment to determine the Planck constant a student uses light of wavelength $\lambda = 471$ nm.

Which of the following is the correct value of λ^{-1} ?

- **■ A** 2.12 nm
- \blacksquare **B** 2.12 × 10⁻⁶ nm⁻¹
- \square C 2.12 × 10⁶ nm⁻¹
- \square **D** 2.12 × 10⁶ m⁻¹

(Total for Question 2 = 1 mark)

Questions 3, 4 and 5 refer to an experiment to determine the resistivity of a material.

A student has a sample of the material in the form of a wire with a diameter of about 1 mm.

- **3** To determine the resistivity of the material, which of the following quantities would **not** be needed?
 - A density
 - **B** resistance
 - C area
 - D length

(Total for Question 3 = 1 mark)

- 4 Which of the following instruments should the student use to measure the diameter of the wire?
 - A electronic balance
 - **B** metre rule
 - C micrometer screw gauge
 - **D** vernier calipers

(Total for Question 4 = 1 mark)

- 5 Which of the following is the SI unit for resistivity?
 - \triangle A Ω
 - $\mathbf{B} \mathbf{B} \mathbf{\Omega} \mathbf{m}^{-1}$
 - \boxtimes C Ω m
 - \square **D** Ω m²

(Total for Question 5 = 1 mark)

TOTAL FOR SECTION A = 5 MARKS

SECTION B

Answer ALL questions in the spaces provided.	
An experiment report states that the mean diameter of a nylon thread is $0.150\text{mm} \pm 0.0$	05 mm.
(a) State the range of the measurements.	(1)
 (b) Calculate the percentage uncertainty in the measurement of the diameter.	(1)
Percentage uncertainty =	
(c) The report states that the mean diameter of a human hair was measured as 0.075 mm with a percentage uncertainty of 5%.	1
Calculate the uncertainty in the measurement of the diameter of the hair.	(1)
 Uncertainty =	
(Total for Question 6 = 3 m	anlza)

7 A student is to determine the viscosity η of a liquid using falling steel spheres and a graphical method.

The student has a measuring cylinder filled with the liquid and some steel spheres of different diameters.

The terminal velocity v of a sphere falling through the liquid is given by

$$v = 2\frac{r^2(\rho_s - \rho_l)g}{9\eta}$$

where r is the radius of the sphere, ρ_s is the density of steel and ρ_l is the density of the liquid. The values of both ρ_s and ρ_l are known.

Write a plan for this experiment.

You should:

(a) draw and label a diagram showing how the apparatus will be used,
(1)

(b) list any additional measuring instruments required that are not shown in your diagram,

(1)

- (c) list the quantities to be measured, (1)
- (d) for two quantities listed in (c) explain your choice of measuring instrument,

 (4)
- (e) state which is the independent variable and which is the dependent variable,
 (2)
- (f) for one quantity comment on whether repeat readings are appropriate in this case,

 (1)
- (g) explain how the data collected will be used to determine the viscosity including a sketch of the expected graph,

(4)

- (h) identify the main sources of uncertainty and/or systematic error,
 (2)
- (i) comment on safety. (1)

(Total for Question 7 = 17 marks)
(10mi ioi Vacanon / 1/ marks)

8 A student determined the acceleration of free fall g using a simple pendulum. The pendulum consists of a mass attached to a string, which is suspended from a support as shown.

The equation for a simple pendulum is $T = 2\pi \sqrt{\frac{l}{g}}$

where T is the time taken for the mass to make one complete swing from A to B and back to A, and l is the length of the string.

The student recorded the following results.

$l/ \times 10^{-2} \mathrm{m}$	T / s	T^2/s^2
40	1.14	1.30
35	1.05	1.10
30	1	1
25	0.91	0.83
20	0.8	0.64

	(a)	Criticise	these	results.
--	-----	-----------	-------	----------

(2)

(b) Explain why a graph of T^2 on the y-axis against l on the x-axis should be a straight line through the origin.

(2)

(c) (i) Plot this graph on the grid provided and draw a line of best fit.

(5)

(ii) Determine the gradient of the graph.	(2)
Gradient = \dots (iii) Use your value of the gradient to calculate a value for g .	
	(2)
g =	
(d) Calculate the percentage difference between the value for <i>g</i> calculated in (c)(iii) and the accepted value for <i>g</i> .	(2)
Percentage difference =(Total for Question 8 = 15 mass	

TOTAL FOR SECTION B = 35 MARKS TOTAL FOR PAPER = 40 MARKS

List of data, formulae and relationships

Acceleration of free fall	$g = 9.81 \text{ m s}^{-2}$	(close to Earth's surface)

Electron charge
$$e = -1.60 \times 10^{-19} \text{ C}$$

Electron mass
$$m_e = 9.11 \times 10^{-31} \text{kg}$$

Electronvolt
$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$$

Gravitational field strength
$$g = 9.81 \text{ N kg}^{-1}$$
 (close to Earth's surface)

Planck constant
$$h = 6.63 \times 10^{-34} \,\mathrm{J s}$$

Speed of light in a vacuum
$$c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$$

Unit 1

Mechanics

Kinematic equations of motion
$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

Forces
$$\Sigma F = ma$$

$$g = F/m$$

$$W = mg$$

Work and energy
$$\Delta W = F \Delta s$$

$$E_{\rm k} = \frac{1}{2} m v^2$$

$$\Delta E_{\rm grav} = mg\Delta h$$

Materials

Stokes' law
$$F = 6\pi \eta r v$$

Hooke's law
$$F = k\Delta x$$

Density
$$\rho = m/V$$

Pressure
$$p = F/A$$

Young modulus
$$E = \sigma/\varepsilon$$
 where

Stress
$$\sigma = F/A$$

Strain
$$\varepsilon = \Delta x/x$$

Elastic strain energy
$$E_{\rm el} = \frac{1}{2}F\Delta x$$

Unit 2

Waves

Wave speed $v = f\lambda$

Refractive index $_1\mu_2 = \sin i/\sin r = v_1/v_2$

Electricity

Potential difference V = W/Q

Resistance R = V/I

Electrical power, energy and P = VIefficiency $P = I^2 R$

 $P = I^2 R$ $P = V^2 / R$

W = VIt

% efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} \times 100$

% efficiency = $\frac{\text{useful power output}}{\text{total power input}} \times 100$

Resistivity $R = \rho l/A$

Current $I = \Delta Q/\Delta t$

I = nqvA

Resistors in series $R = R_1 + R_2 + R_3$

Resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Quantum physics

Photon model E = hf

Einstein's photoelectric $hf = \phi + \frac{1}{2}mv_{\text{max}}^2$

equation

