Write your name here Surname	Oth	er names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Physics Advanced Unit 6: Experimenta	nl Physics	
Thursday 19 May 2016 – Af Time: 1 hour 20 minutes	ternoon	Paper Reference WPH06/01
You must have: Ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.

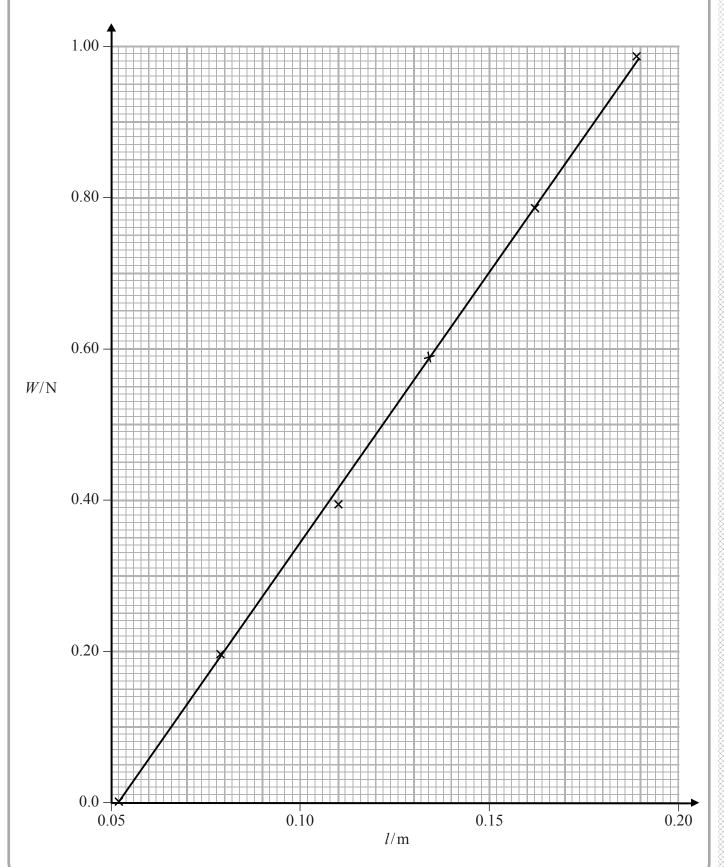
Information

- The total mark for this paper is 40.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

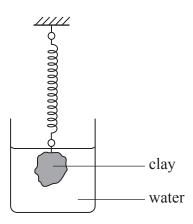
- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 6 6 5 5 A 0 1 1 6


Turn over ▶

Answer ALL questions in the spaces provided.

A student measured the length l_0 of a spring. She suspended different weights W from the spring and measured the new length l each time.


She drew a graph of W against l. She measured the gradient of the line of best fit as 7.14 Nm⁻¹.

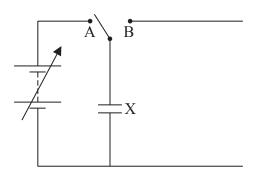
	plain why a metre rule is a suitable instrument to make this measurement.	(2)
(b) (i)	The student suspended a piece of modelling clay from the spring. She recorded the new length of the spring as $l = 14.3$ cm.	
	Determine the weight W_1 of the clay.	(1)
	$W_1 = \dots$	
(ii)	The student estimated the uncertainty in l as 2 mm. Use this uncertainty and the graph to estimate the uncertainty in your value for W_1 .	(2)
	Uncertainty =	
(iii)	Calculate the percentage uncertainty in your value for W_1 .	(1)

(c) The student immersed the clay in water as shown in the diagram. The upthrust of the water on the clay reduced the force of the clay on the spring to a new value W_2 and so l was also reduced.

(i) On the diagram draw and label the three forces acting on the clay.

(1)

(ii) When the clay was immersed the student recorded l=9.1 cm. Determine W_2 .


(1)

 $W_2 = \dots$

(d) The ratio	$\frac{\text{Density of clay}}{\text{Density of water}} =$	$\frac{W_1}{W_1 - W_2}$			
density of	water = 1000 kg m^{-3}				
Calculate	a value for the densit	y of clay.			(2)
			Density	of clay =	
(e) The manu	facturer's value for the	ne density of t	-	-	
	on the accuracy of y			'	
					(3)
			(Total for	Question 1 = 13	marks)

2 Part of an electric circuit is shown.

When the switch is connected to terminal A the capacitor X is connected to the variable power supply.

(a) (i) Add a second capacitor Y to the circuit so that it is connected in parallel with X when the switch is moved to B.

(1)

(ii) Add a voltmeter so that the potential difference (p.d.) across X can be measured when the switch is in either position.

(1)

(b) The capacitance of X is C_X . If C_X is known, this circuit can be used to determine the capacitance C_X of capacitor Y using the equation

$$V_2 = \frac{C_{\rm X}}{C_{\rm Y}} (V_1 - V_2)$$

where

- V_1 is the p.d. across X when it is connected to the power supply
- V_2 is the p.d. across X when Y is connected in parallel with it.

Write a plan for an experiment using this circuit and a graphical method to determine $C_{\scriptscriptstyle Y}$

Your plan should include

(i) the readings you would take

(2)

(ii) the graph you would plot and how you would use the graph to determine $C_{\rm y}$

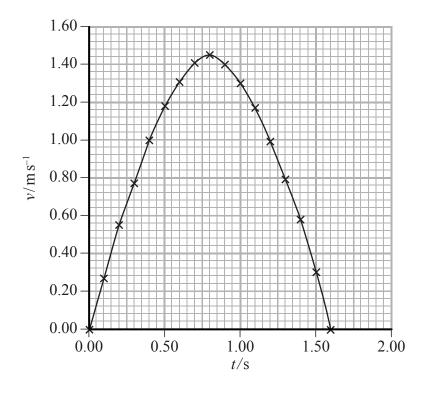
(2)

(iii) how you would ensure the capacitors would not be damaged during the experiment

(1)

(iv) a precaution you would take to ensure the results are accurate.

(1)



(Total for Question 2 = 8 marks)

A pendulum is made using a heavy mass suspended on a length of string. The pendulum was suspended from a high ceiling. The pendulum was pulled to one side to a maximum displacement and released.

The velocity *v* of the mass and the corresponding time *t* were recorded using a sensor and a data logger. Readings were recorded from the instant the pendulum was released.

The readings were plotted on the graph shown.

(a) (i) Determine the time period T of the pendulum.

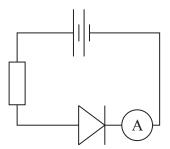
(1)

T =

(ii) State the value for t when the pendulum is at the centre of the oscillation.

(1)

t =


(iii) Explain why the graph has a horizontal tangent at t = 0.80 s.

(2)

(b) (i) Draw a tangent to the graph at $t = 0.40$ s and use it to calculate the acceleration this point.	n at (2)
Acceleration =	
(ii) State the next time the mass had the same magnitude of acceleration as in (b)(i). (1)
$t = \dots$	
(c) State one advantage of using a data logger.	(1)
(Total for Question 3 = 8	marks)

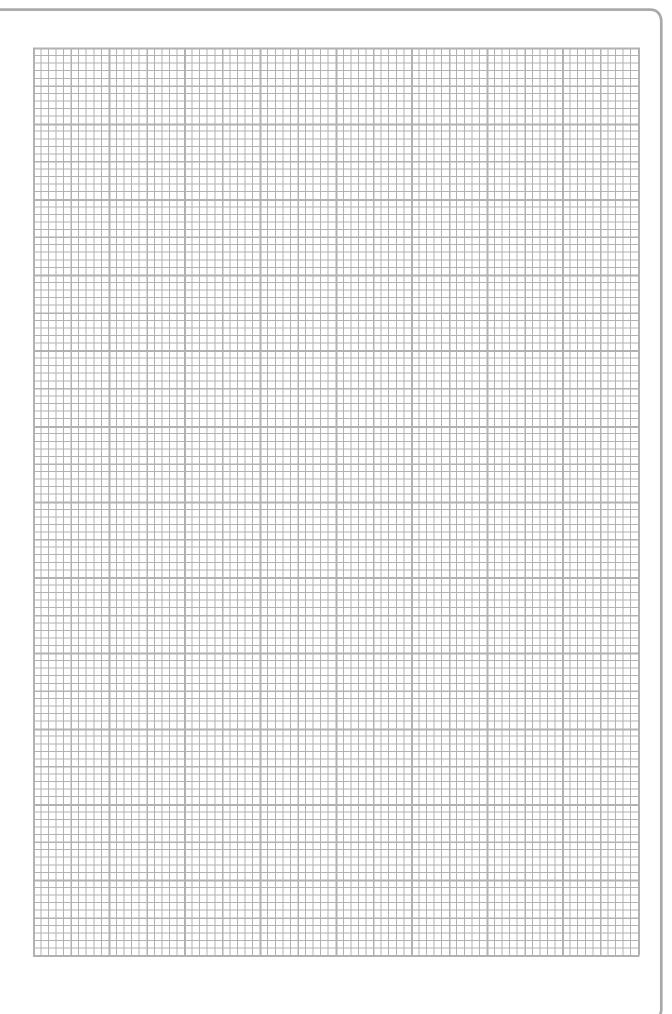
4 The diode connected in the circuit shown will allow a current to flow.

For a constant potential difference, the current I and the temperature T of the diode are related by

$$I = I_0 e^{-\frac{p}{T}}$$

where I_0 and p are constants and T is measured in kelvin.

(a) Explain why a graph of $\ln I$ against 1/T should produce a straight line.


(b) A student carried out an experiment using this circuit. He recorded I and the temperature θ of the diode for different values of θ measured in °C. The results are shown in the table.

θ/°C	I/mA		
0	1.2		
20	3.0		
40	6.0		
60	12.5		
80	22.6		
100	41.7		

(i) Draw on the grid opposite a graph of $\ln I$ against 1/T. Use the columns in the table for your processed data.

(4)

(2)

(ii) Use your graph to determine a value for <i>p</i> .	(2)
	<i>p</i> =
(iii) Theory suggests that the electron charge e is given by $e = \frac{kp}{V}$	
where k is the Boltzmann constant and $V = 0.32$ V.	
Calculate a value for <i>e</i> .	(1)
	e =
(iv) Comment on the accuracy of the result.	(2)
(Total for Qu	estion 4 = 11 marks)
momit non n	APER = 40 MARKS

List of data, formulae and relationships

 $g = 9.81 \text{ m s}^{-2}$ Acceleration of free fall (close to Earth's surface)

Boltzmann constant $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

 $k = 1/4\pi\varepsilon_0$ Coulomb's law constant

 $= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$

 $e = -1.60 \times 10^{-19}$ C Electron charge

 $m_{e} = 9.11 \times 10^{-31} \text{kg}$ Electron mass

 $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$ Electronvolt

 $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ Gravitational constant

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

Permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$

 $h = 6.63 \times 10^{-34} \,\mathrm{J s}$ Planck constant

Proton mass $m_p = 1.67 \times 10^{-27} \text{ kg}$

 $c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$ Speed of light in a vacuum

 $\sigma = 5.67 \times 10^{-8} \; W \; m^{-2} \; K^{-4}$ Stefan-Boltzmann constant

Unified atomic mass unit $u = 1.66 \times 10^{-27} \text{ kg}$

Unit 1

Mechanics

Kinematic equations of motion v = u + at

> $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

> g = F/mW = mg

 $\Delta W = F \Delta s$

 $E_{\rm k} = \frac{1}{2}mv^2$

 $\Delta E_{\rm grav} = mg\Delta h$

Materials

Work and energy

Stokes' law $F = 6\pi \eta r v$

 $F = k\Delta x$ Hooke's law

 $\rho = m/V$ Density

p = F/APressure

 $E = \sigma/\varepsilon$ where Young modulus

> Stress $\sigma = F/A$ Strain $\varepsilon = \Delta x/x$

 $E_{\rm el} = \frac{1}{2}F\Delta x$ Elastic strain energy

Unit 2

Waves

Wave speed $v = f\lambda$

Refractive index $_{1}\mu_{2} = \sin i / \sin r = v_{1}/v_{2}$

Electricity

Potential difference V = W/Q

Resistance R = V/I

Electrical power, energy and P = VI efficiency $P = I^2R$

 $P = I^{2}R$ $P = V^{2}/R$ W = VIt

% efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} \times 100$

% efficiency = $\frac{\text{useful power output}}{\text{total power input}} \times 100$

Resistivity $R = \rho l/A$

Current $I = \Delta Q/\Delta t$

I = nqvA

Resistors in series $R = R_1 + R_2 + R_3$

Resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Quantum physics

Photon model E = hf

Einstein's photoelectric $hf = \phi + \frac{1}{2}mv_{\text{max}}^2$

equation

Unit 4

Mechanics

Momentum p = mv

Kinetic energy of a

non-relativistic particle $E_k = p^2/2m$

Motion in a circle $v = \omega r$

 $T=2\pi/\omega$

 $F = ma = mv^2/r$

 $a = v^2/r$

 $a = r\omega^2$

Fields

Coulomb's law $F = kQ_1Q_2/r^2$ where $k = 1/4\pi\epsilon_0$

Electric field E = F/Q

 $E = kQ/r^2$

E = V/d

Capacitance C = Q/V

Energy stored in capacitor $W = \frac{1}{2}QV$

Capacitor discharge $Q = Q_0 e^{-t/RC}$

In a magnetic field $F = BIl \sin \theta$

 $F = Bqv \sin \theta$

r = p/BQ

Faraday's and Lenz's Laws $\varepsilon = -d(N\phi)/dt$

Particle physics

Mass-energy $\Delta E = c^2 \Delta m$

de Broglie wavelength $\lambda = h/p$

Unit 5

Energy and matter

Heating $\Delta E = mc\Delta\theta$

Molecular kinetic theory $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$

Ideal gas equation pV = NkT

Nuclear Physics

Radioactive decay $dN/dt = -\lambda N$

 $\lambda = \ln 2/t_{_{1/2}}$

 $N = N_0 e^{-\lambda t}$

Mechanics

Simple harmonic motion $a = -\omega^2 x$

 $a = -A\omega^2 \cos \omega t$ $v = -A\omega \sin \omega t$ $x = A\cos \omega t$ $T = 1/f = 2\pi/\omega$

Gravitational force $F = Gm_1m_2/r^2$

Observing the universe

Radiant energy flux $F = L/4\pi d^2$

Stefan-Boltzmann law $L = \sigma T^4 A$

 $L = 4\pi r^2 \sigma T^4$

Wien's Law $\lambda_{\text{max}} T = 2.898 \times 10^{-3} \text{ m K}$

Redshift of electromagnetic

radiation $z = \Delta \lambda / \lambda \approx \Delta f / f \approx v / c$

Cosmological expansion $v = H_0 d$