Please check the examination det	tails below	before enter	ring your candidate information
Candidate surname			Other names
Pearson Edexcel	Centre	e Number	Candidate Number
nternational			
Advanced Level			
	_		
Thursday 24	Jan	uary	v 2019
		<u> </u>	
Morning (Time: 1 hour 15 minut	:es)	Paper Re	eference WCH06/01
Chemistry			
•			
Advanced			
Unit 6: Chemistry Labo	oratoi	rv Skills	s II
omit of chamber y Lab	J. 4.0.	, J	
Candidates must have:			Total Marks
Scientific calculator			ll ll
			JI
			/ \

Instructions

- Use **black** ink or **black** ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions. Write your answers in the spaces provided.

- 1 The inorganic compounds **A** and **B** each contain one cation and one anion.
 - (a) A is a green solid.

Two tests were carried out on separate portions of an aqueous solution of A.

(i) Complete the table.

(2)

Test	Observation	Inference
Test 1 A few drops of aqueous	A green precipitate formed	The formula of the cation
sodium hydroxide were added to a sample of the solution of A	Trigicell precipitate formed	in A is
More of the sodium hydroxide was added until it was in excess	The precipitate dissolved to form a green solution	
Test 2		
Dilute nitric acid and aqueous silver nitrate were added to a sample of the solution of A		The formula of the anion in A is Cl ⁻

(ii) Give the **formula** of the **anion** responsible for the green colour of the final solution in Test **1**.

(1)

(iii) Write the **ionic** equation for the reaction in Test **2**. Include state symbols.

(1)

(b) **B** is a white solid.

Two tests were carried out on separate portions of an aqueous solution of **B**.

(i) Complete the table.

(3)

Test	Observation	Inference
Test 3 A few drops of aqueous sodium hydroxide were added to a sample of the solution of B More of the sodium hydroxide was added until it was in excess		The formula of the cation in B is Zn ²⁺
Test 4 Dilute hydrochloric acid and aqueous barium chloride were added to a sample of the solution of B	A white precipitate formed	The name or formula of the anion in B is

(ii) Write the **ionic** equations for the **two** reactions in Test **3**. State symbols are not required.

(2)

(Total for Question 1 = 9 marks)

2	An	ester $oldsymbol{C}$ was hydrolysed by heating with aqueous sodium hydroxide.	
	The	e resulting mixture was distilled to give an organic liquid D .	
	The	e residue was acidified and the mixture purified to produce an organic liquid E .	
	(a)	A spatula measure of phosphorus(V) chloride was added to separate portions of D and E . They both gave off a gas which produced steamy fumes in air and turned damp blue litmus paper red.	
		Identify, by name or formula, the gas produced and the group in $\bf D$ and $\bf E$ indicated by this test.	(2)
		Gas	
		Group	
	(b)	D was oxidised to produce a carbonyl compound.	
		State what additional information this gives about D .	(1)
	(c)	In the mass spectrum of D , the molecular ion peak is at $m / e = 60$. The low resolution proton nmr spectrum of D consists of three peaks with relative peak areas in the ratio $6:1:1$.	
		Draw the structural or displayed formula of D .	(2)
	(d)	Aqueous sodium hydrogencarbonate was added to a portion of E . There was immediate effervescence.	
		Identify, by name or formula, the gas produced and the functional group in E .	(2)
		Gas	
		Functional group	

(e) In the mass spectrum of **E**, the molecular ion peak is also at m/e = 60.

Draw the structural or displayed formula of **E**.

(1)

(f) Draw the structural or displayed formula of the ester ${\bf C}$.

(1)

(Total for Question 2 = 9 marks)

BLANK PAGE

- 3 This question is about compounds of manganese in different oxidation states.
 - (a) Describe what you would **see** when aqueous sodium hydroxide is added to an aqueous solution containing manganese(II) ions and the mixture is left to stand for a few minutes.

(2)

(b) A sample of an aqueous solution of manganate(VI) ions is prepared from an aqueous solution of manganate(VII) ions and solid manganese(IV) oxide under appropriate conditions.

The relevant standard electrode potentials are

$$MnO_4^- + e^- \rightleftharpoons MnO_4^{2-}$$
 $E^{\Theta} = +0.56 \text{ V}$

$$MnO_4^{2-} + 2H_2O + 2e^- \rightleftharpoons MnO_2 + 4OH^- \qquad E^{\Theta} = +0.59 \text{ V}$$

$$MnO_4^{2-} + 4H^+ + 2e^- \rightleftharpoons MnO_2 + 2H_2O \qquad E^{\Theta} = +2.26 \text{ V}$$

(i) Choose appropriate standard electrode potentials to calculate E_{cell}^{Θ} for the formation of manganate(VI) ions in **acidic** solution. Use your calculated value of E_{cell}^{Θ} to explain why manganate(VI) ions cannot be prepared under acidic conditions.

(2)

(ii) Explain, in terms of standard electrode potentials, why manganate(VI) ions can be prepared in a **concentrated** alkaline solution.

(2)

- (c) An outline procedure for determining the amount of dissolved oxygen in pond water is given.
- Step **1** Shake 100 cm³ of pond water with manganese(II) hydroxide in a closed container. The manganese(II) hydroxide is oxidised to manganese(III) hydroxide.

$$4Mn(OH)_2 + O_2 + 2H_2O \rightarrow 4Mn(OH)_3$$

Step **2** Add excess acidified potassium iodide to the mixture. The manganese(III) ions oxidise iodide ions to iodine.

$$2Mn^{3+} + 2I^{-} \rightarrow 2Mn^{2+} + I_{2}$$

Step 3 Titrate the iodine with 0.0100 mol dm⁻³ sodium thiosulfate.

$$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$$

- Step 4 Repeat the titration until concordant titres are obtained.
 - (i) State a suitable indicator for this titration and give the colour change at the end-point.

(2)

Indicator.....

Colour change from to

(ii) Following this procedure, a mean titre of 16.20 cm³ was recorded.

Calculate the volume of dissolved oxygen, in cm³, in the 100 cm³ sample of pond water at room temperature and pressure.

[Molar volume of gas at room temperature and pressure = $24\,000\,\mathrm{cm}^3\,\mathrm{mol}^{-1}$]

(4)

(Total for Question 3 = 12 marks)

4 Two students carried out an experiment to nitrate methyl benzoate.

$$\begin{array}{c} O \\ \parallel \\ C \\ O \end{array} + HNO_3 \\ \begin{array}{c} O \\ \parallel \\ C \\ O \end{array} + H_2O \\ \end{array}$$

methyl 3-nitrobenzoate

The following outline procedure was used.

- Step 1 Place 5.0 cm³ of concentrated sulfuric acid into a two-necked, round-bottomed flask and cool it to 5 °C.

 Slowly add 3.0 cm³ of methyl benzoate to the sulfuric acid, keeping the temperature at 5 °C.
- Step 2 Place 3.0 cm³ of concentrated nitric acid in a boiling tube and cool it to 5 °C. Slowly add 3.0 cm³ of concentrated sulfuric acid to the boiling tube, while mixing and keeping the temperature at 5 °C. This is the nitrating mixture.
- Step **3** Pour the nitrating mixture into a tap funnel. Place this **vertically** in the round-bottomed flask and put the flask in an ice-bath. Place a thermometer in the other neck of the flask.
- Step 4 Add the nitrating mixture, a drop at a time, to the mixture in the flask. Do not allow the temperature to rise above 15 °C.

 When all the nitrating mixture has been added, leave the mixture for about 10 minutes at room temperature.
- Step 5 Pour the mixture from the flask into a small beaker containing crushed ice.
- Step 6 Filter the impure solid methyl 3-nitrobenzoate under reduced pressure.
- Step **7** Recrystallise the methyl 3-nitrobenzoate using methanol as the solvent.
- Step 8 Dry the methyl 3-nitrobenzoate and find the mass of crystals obtained.
- Step **9** Determine the melting temperature of the crystals obtained.

(a) Give a reason why benzene should not be used in a school laboratory.	(1)
(b) Give a reason why the temperature is kept low in Steps 1 and 2 .	(1)
(c) Complete the diagram to show the apparatus set up at the end of Step 3 .	(3)

(d) The molar mass of methyl 3-nitrobenzoate is 181 g mol⁻¹. However, a small amount of a product with molar mass 226 g mol⁻¹ is also formed if the temperature is allowed to rise above 15 °C in Step **4**.

Suggest the structure and name of a possible product with this molar mass.

(2)

Structure

Name_____

(e) Give a reason why the methyl 3-nitrobenzoate is separated from the reaction mixture by filtration under reduced pressure, rather than normal filtration.

(1)

- (f) **Student 1** described how to carry out the recrystallisation in Step **7** to obtain a pure sample of methyl 3-nitrobenzoate.
 - Step A Dissolve the impure solid in some hot methanol.
 - Step B Cool the solution in an ice-bath.
 - Step C Separate the crystals using suction filtration.
 - **Step D** Dry the crystals by mixing them with solid anhydrous sodium sulfate in a stoppered boiling tube.

Jus	te how the method for Step A sho tify your answer.		1.00
			(2)
(ii) Des	scribe what the student should do	after Step A and before carry	ying out Step B .
	tify your answer.		
			(2)
••••••			
(iii) Giv	e a reason why Step D would not	work and describe how the s	tudent
sho	ould dry the crystals.		(2)
			(2)

(g) **Student 2** carried out the recrystallisation correctly and obtained 2.28 g of methyl 3-nitrobenzoate from 3.0 cm³ of methylbenzoate.

Calculate the percentage yield of methyl 3-nitrobenzoate.

Data

Density of methyl benzoate = $1.09 \,\mathrm{g}\,\mathrm{cm}^{-3}$

Molar mass of methyl benzoate = $136 \,\mathrm{g} \,\mathrm{mol}^{-1}$

Molar mass of methyl 3-nitrobenzoate = $181 \,\mathrm{g} \,\mathrm{mol}^{-1}$

(3)

(h) The melting temperature of methyl 3-nitrobenzoate is 77 °C.

Describe how the students should use the apparatus shown to determine the melting temperature **range** of a sample of their crystallised methyl 3-nitrobenzoate.

(Total for Question 4 = 20 marks)

TOTAL FOR PAPER = 50 MARKS

The Periodic Table of Elements

	_	
•	٥	
•	n	
,	4	
•	~	
•	7	
,	_	

0 (8)

	_				_	_			_				_			_					
(18) 4.0 Helium	7 6	7.07	Š	neon	10	39.9	Αr	argon 18	83.8	추	krypton	36	131.3	×	xenon 54	[222]	瀀	radon 86		ted	
(2)	(4)	13.0	L	fluorine	6	35.5	ฮ	chlorine 17	79.9	Ŗ	bromine	35	126.9	Ι	iodine 53	[210]	Αt	astatine 85		oeen repor	
31	(6/)	0.0	0	oxygen	œ	32.1	s	25 Tr	79.0	Se	selenium	34	127.6	<u>e</u>	tellurium 52	[509]	8	polonium 84		116 have t	ticated
(45)	(61)	0.4	z	nitrogen	7	31.0	۵	phosphorus 15	74.9	As	arsenic	33	121.8	Sb	antimoriy 51	209.0	Bi	bismuth 83		Elements with atomic numbers 112-116 have been reported	but not fully authenticated
5	(4)	0.21	U	carbon	9	28.1	Si	silicon 14	72.6	g	germanium	32	118.7	S	20 th	207.2	ď	lead 82		atomic nur	DUT NOT 11
(3)	(61)	10.8	ω	poron	2	27.0	¥	aluminium 13	69.7	g	gallium	31	114.8	드	indium 49	204.4	F	thallium 81		ents with	
								(12)	65.4	Zu	zinc	30	112.4	8	cadmium 48	200.6	Ę	mercury 80		Elem	
								(11)	63.5	5	copper	29	107.9	Ag	silver 47	197.0	Αn	plog 79	[272]	Rg	roentgenium 111
								(10)	58.7	ź	nickel	28	106.4	В	palladium 46	195.1	£	platinum 78	[271]	Mt Ds Rg	darmstactium 110
								(6)	58.9	ပိ	cobalt	27	102.9	문	rhodium 45	192.2	Ļ	iridium 77	[368]	Wt	neitnerium 109
1.0 Hydrogen								(8)	55.8	Fe	iron	26	101.1	Ru.	ruthenium 44	190.2	ő	osmium 76	I_{-}		hassium 108
								0)	54.9	W		25	[86]	բ	technetium 43	186.2	Se.	rhenium 75	[264]		bohrium 107
		mass	- 	- Property	nmper			(9)	52.0	ъ	chromium m	24	626	٩	molybdenum technetium 42 43	183.8	≯	tungsten 74	[366]	Sg	seaborgium 106
¥		relative atomic mass	atomic symbol	name	atomic (proton) number			(5)	50.9	>	vanadium	23	92.9	ą	niobium 41	180.9	Тa	tantalum 73	[292]		dubnium 105
	-	relati	ato	- January	atomic			(4)	47.9	ï	titanium	22	91.2	Zr	zirconium 40	178.5	Ξ	hafnium 72	[261]	¥	nutherfordium 104
								(3)	45.0	S	scandium	21	88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227]		actinium 89
Ĉ	(2)	7.0	æ	beryllium	4	24.3	Mg	magnesium 12	40.1	S	calcinm	20	97.6	'n	strontium 38	137.3	Ba	barium 56	[326]	Ra	radium 88
5	Ξ,	6.9	=	lithium	2	23.0	Na	sodium 11	39.1	¥	potassium	19	85.5	8	rubidium 37	132.9	ပိ	caesium 55	[223]	Ŧ,	francium 87

series
thanide
*Lar

Actinide series

140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
å	4	ž	Pm	Sm	E	В	4	δ	운	й	Ę	χ	-
cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
28	29	09	61	62	63	64	65	99	67	68	69	20	71
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[526]	[254]	[257]
ᆮ	Pa	_	å	Pn	Am	٣	쑮	ัซ	E	F	PW	ટ	ב
thorium	protactinium	uranium	neptunium	plutonium	americium	arrium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
8	91	92	93	94	95	96	4	86	66	9	101	102	103