

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International Advanced Level In Chemistry (WCH06)
Chemistry Laboratory Skills II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WCH06_01_1806_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	Fe ³⁺ /[Fe(H ₂ O) ₆] ³⁺	Cr ₂ O ₇ ²⁻ Mn ²⁺	1
	ALLOW Fe ⁺³		
	IGNORE State symbols, even if incorrect Incorrect number of water ligands		

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	Fe(OH) ₃ OR Fe(OH) ₃ (H ₂ O) ₃ ALLOW TE on incorrect cation from (a)(i) Ligands in any order Incorrect number of water ligands	Fe(OH) ₃ ⁺	1

Question Number	Acceptable Answers	Reject	Mark
1(a)(iii)	Iodine/ I ₂ /I ₃ -	I, FeI ₃ , I ⁻	1

Question Number	Acceptable Answers	Reject	Mark
1(a)(iv)	Silver nitrate (solution) / AgNO₃((aq)) ALLOW Ag⁺((aq)) IGNORE Subsequent tests e.g. addition of ammonia		1

Question Number	Acceptable Answers	Reject	Mark
1(a)(v)	Effervescence / bubbles (of colourless gas)/ fizzing	Coloured gases	1
	IGNORE Gas is evolved Carbon dioxide forms Gas turns limewater cloudy Solid disappears Formation of precipitate	Other gases	

Question Number	Acceptable Answers		Reject	Mark
1(b)(i)	Mark the three parts of this ite independently.	em		3
	Observation: (pale /dark) green	(1)	Blue-green	
	ALLOW for M2 and M3 Ligands in any order Incorrect number of water ligands	S		
	Inference: (precipitate) Fe(OH) ₂ / Fe(OH) ₂ (H ₂ O) ₄	(1)	Fe(OH) ₂ (NH ₃) ₄	
	(Cation) $Fe^{2+}/[Fe(H_2O)_6]^{2+}$	(1)		
	Allow TE only on Cr ⁶⁺ in (a)(i) an Cr ³⁺ in (b)(i) in which case all thremarks may be awarded: green / blue-green (1) Cr(OH) ₃ (1) Cr ³⁺ (1)			

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	Mark independently Fe(OH) ₃	FeO	1
	OR Fe(OH) ₃ (H ₂ O) ₃ ALLOW Fe ₂ O ₃		

Question Number	Acceptable Answers	Reject	Mark
1(c)	$2Fe^{3+} + SO_2 + 2H_2O \rightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$		1
	OR		
	Use of hydrated ions (e.g. $2[Fe(H_2O)_6]^{3+}$ and $2[Fe(H_2O)_6]^{2+}$) in equation		
	IGNORE		
	State symbols even if incorrect.		

(Total for Question 1 = 10 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)	Sodium hydrogencarbonate / NaHCO ₃ (solution) ALLOW KHCO ₃ Sodium bicarbonate Sodium carbonate/ Na ₂ CO ₃ Potassium carbonate/ K ₂ CO ₃ IGNORE ice cold water	Strong alkalis	1
	ice colu watel		

Question Number	Acceptable Answers	Reject	Mark
2(b)	When half of the reaction mixture has been pipetted into the quenching solution ALLOW Immediately after the all solution has been transferred (to the quenching solution)		1

Question	Acceptable Answers	Reject	Mark
Number			
2(c)(i)	0.01(00) (mol dm ⁻³)		1
	If given, units must be correct		

Question Number	Acceptable Answers		Reject	Mark
2(c)(ii)	M1 Mol thiosulfate = 1.85×10^{-4} M2 Mol I_2 in sample = $\underbrace{(1.85 \times 10^{-4})}_{2}$ = 9.25×10^{-2} Concentration I_2 = $(9.25 \times 10^{-5}) \times 100$ = 9.25×10^{-3} mol dm ⁻³	(1) 0 ⁻⁵		4
	M3 Rate of change = $(0.01 - 9.25 \times 10^{-3})$ 70	(1)	$[I_2)]_i < [I_2)]_t$	
	M4 This mark depends on the use of a time in M3. rate = $1.07143 \times 10^{-5} = 1.07 \times 10^{-5}$ and mol dm ⁻³ s ⁻¹ TE on (c)(i) and M2			
	ALLOW mol dm ⁻³ / s IGNORE SF except 1	(1)		

Answer to (c)(i)	Answer to M3 , including unit	Mark for (c)(ii)
0.01	$\frac{9.25 \times 10^{-3}}{70} = 1.32 \times 10^{-4}$ (0.01 not used)	3
0.05	$\frac{(0.05 - 9.25 \times 10^{-3})}{70} = \frac{0.0408}{70} = 5.82 \times 10^{-4}$	4
0.02	$\frac{(0.02 - 9.25 \times 10^{-3})}{70} = \frac{0.0108}{70} = 1.54 \times 10^{-4}$	4
0.5	$\frac{(0.5 - 9.25 \times 10^{-3})}{70} = \frac{0.491}{70} = 7.01 \times 10^{-3}$	4
0.25	$\frac{(0.25 - 9.25 \times 10^{-3})}{70} = \frac{0.241}{70} = 3.44 \times 10^{-3}$	4

Question Number	Acceptable Answers		Reject	Mark
2(c)(iii)	Iodine concentration does not af rate OR rate equation is zero order wrt iodine ALLOW	fect	zero order wrt thiosulfate	2
	Iodine (concentration) does not appear in the rate equation (Diagram shows that the)	(1)		
	rate is constant	(1)	Because the gradient is zero	
			Just `gradient is constant'	

Question Number	Acceptable Answers	Reject	Mark
2(c)(iv)	Straight line with less negative gradient, starting from same point as the original		1
	New line Original		

Question Accepta	able Answers		Reject	Mark
The rat origina ALLOW The gravalue in IGNOR Rate / The reapropan OR The rat concen IGNOR	edient of the line is half of in the original experiment E gradient would be lower eaction is first order wrtuone te is proportional to the tration of propanone	_	Rate constant changes	2

ptable Answers		Reject	Mark
ch indicator	(1)		3
ed when pale yellow / straw co	oloured	Yellow	
W d just before the end-point	(1)	At the end-	
point is blue-black / blue / bla ırless (1)	ick to	point	
	d when pale yellow / straw co W d just before the end-point point is blue-black / blue / bla	d when pale yellow / straw coloured W d just before the end-point (1) point is blue-black / blue / black to	d when pale yellow / straw coloured W d just before the end-point (1) At the end-point is blue-black / blue / black to

(Total for Question 2 = 15 marks)

Question Number	Acceptable Answers	Reject	Mark
3(a)	(dilute) sulfuric acid / H ₂ SO ₄	Just H ⁺ hydrochloric acid nitric acid concentrated sulfuric acid	1

Question Number	Acceptable Answers	Reject	Mark
3(b)	A salt bridge ALLOW (Strip of) filter paper OR inverted U-tube containing gel (1) (saturated) potassium nitrate solution/ KNO ₃ OR sodium nitrate solution/ NaNO ₃ (1)	pH paper NaCl / KCl / NaBr / KBr / NaI /KI	2

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	M1 For direction of electron flow e.g. electrons flow to the positive side OR from left to right OR to the KMnO ₄ side ALLOW KMnO ₄ side is cathode (1)		2
	M2 Reduction occurs at the right-hand electrode OR Potassium manganate(VII) gains electrons and Potassium manganate(VII)/ manganate(VII) ions stronger oxidising agent ALLOW Reverse arguments		

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	$MnO_4^- + 8H^+ + 5e^{(-)} \rightarrow Mn^{2+} + 4H_2O$ ALLOW		1
	Multiples		
	Reverse equation if answer to (c)(i) is potassium dichromate		

Question Number	Acceptable Answers	Reject	Mark
3(d)	becomes more orange/ less green / less brown	Anything purple	1
	ALLOW Green to orange IGNORE "dark" or "light" before colour	Orange to green Green to yellow Just one colour (not a change)	

Question Number	Acceptable Answers	Reject	Mark
3(e)	Ion concentration(s) / solution(s) should be 1.00 mol dm ⁻³ / 1 Molar/ 1M OR Mixing (equal volumes of) two solutions each 2.00 mol dm ⁻³	Answer implying only one compound needs to be 1M	1
	ALLOW 'concentration = 1.00 mol dm ^{-3'} 'ion concentration = 1.00 mol dm ^{-3'}		
	IGNORE [H ⁺] = 8.00 mol dm ⁻³ / 1.00 mol dm ⁻³ if others are 1.00 mol dm ⁻³ Pressure / temperature		

Question Number	Acceptable Answers	Reject	Mark
3(f)(i)	Penalise use of mauve/violet/lilac once only in (f)(i) and (ii) Remains purple	Just "no change" Mauve/violet/ lilac/pink	1
	ALLOW Paler purple due to dilution	Colourless to purple	

Question Number	Acceptable Answers	Reject	Mark
3(f)(ii)	Goes from colourless to purple ALLOW	very pale pink as the starting colour	1
	from colourless to (pale) pink	(to) mauve/violet/ lilac / brown	

(Total for Question 3 = 10 marks)

Question Number	Acceptable Answers	Reject	Mark
4(a)	Method 1 Add bromine (solution) / Br ₂ (1) White precipitate (with 2-hydroxybenzoic acid)	Testing with PCI ₅ Na Na ₂ CO ₃	2
	OR Bromine is decolorised (1)	NaOH K ₂ Cr ₂ O ₇	
	IGNORE Medicinal smell		
	Method 2 Add (neutral) iron(III) chloride solution/ ferric chloride / FeCl ₃ (1)		
	Red/ blue / green / purple violet colour (1)		
	Method 3 Add ethanoyl chloride/ an acyl chloride		
	ALLOW Add named carboxylic acid and a strong acid (1)		
	Characteristic smell / steamy fumes		
	ALLOW Fruity / medicinal smell Observation mark if carboxylic acid but no strong acid (1)		

4(b)(i) (Very) flammable and corrosive Extra answers Inflammable and corrosive eq flammable	Mark
Oxidant for flammable	1

Question Number	Acceptable Answers	Reject	Mark
4(b)(ii)	Mol 2-hydroxybenzoic acid = 2.0/138 = 0.0144928/ 0.0145 /0.014 (1)		2
	Mass ethanoic anhydride = (0.0144928) x 102 = 1.47826087 / 1.48 / 1.5 (g) (1)		
	$\frac{2.0 \times 102}{138} = 1.48 \text{ (g) scores (2)}$		
	IGNORE SF except 1SF Intermediate rounding if final answer is correct		

Question Number	Acceptable Answers	Reject	Mark
4(b)(iii)	Mass ethanoic anhydride (= 4 x 1.08) = 4.32 g (greater than 1.48 so excess)		1
	OR 1.48 g of ethanoic anhydride = (1.48/1.08) = 1.37 cm ³ (less than 4.0 cm ³ so excess)		
	OR Mol ethanoic anhydride = (4.32/102) =0.0424 Mol 2-hydroxybenzoic acid = (2/138) =0.0145 (less than ethanoic anhydride)		
	IGNORE Extra calculation showing how much is excess		

Question Number	Acceptable Answers	Reject	Mark
4(b)(iv)	Final answer will depend on rounding of intermediate steps. Most rounding leads to answers between 65 and 65.4%		2
	Correct answer without calculation shown scores 2		
	Mol aspirin = $1.70/180 = 9.444 \times 10^{-3}$ (1)	(1.7 x 100)/2 =85%	
	% yield = (9.444 x 10 ⁻³ x 100)/ 0.0144927		
	=65.1669/ 65.2 /65%		
	ALLOW % yield = (9.4 x 10 ⁻³ x 100)/ 0.014 =67%		
	(1)		
	OR		
	Max yield = $\frac{2.00 \times 180}{138}$ = 2.608696 g (1)		
	% Yield = <u>1.7 x 100</u> 2.608696		
	= 65.1666/ 65.2 / 65 (1)	2 x 100 2.6	
	Ignore SF except 1 SF TE except yield > 100%	= 77%	

Question Number	Acceptable Answers	Reject	Mark
4(b)(v)	The correct answer may be shown on the diagram. Top of condenser should not be sealed (so thermometer must be removed) ALLOW Thermometer must be removed OR Thermometer should be in water bath IGNORE There is nowhere for gas to escape OR Thermometer not needed for reflux (1)	Move thermometer closer to liquid level	2
	The condenser has no inner tube OR an inner tube and outer water jacket should be shown OR Diagram showing Liebig condenser ALLOW Column should be replaced by Liebig condenser (1)	Incorrect diagram of Liebig condenser	

Question	Acceptable Answers	Reject	Mark
Question Number 4(b)(vi)	Funnel with perforated base ALLOW Funnel as in diagram labelled Buchner funnel Conical funnel labelled Hirsch funnel (1) IGNORE Shape of funnel if shown as perforated Filter paper and flask with side arm (Buchner flask) (1) Sealed system and (Reduced pressure achieved by) connection to (suction) pump/ to vacuum pump / to flow of water	Simple gravity filtration Just "to tap"	Mark 3
	through valve/ to (water) aspirator. This may be shown on diagram ALLOW (air to) vacuum (1) M3 can be awarded with incorrect		
	funnel		

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	C ₆ H ₄ O(+)	Structural/ skeletal formulae	1
	ALLOW		
	Atoms in any order	Incorrect charge(s)	
	IGNORE	charge(3)	
	Benzene ring connected to O+ if	$C_6H_4O^{2+}$	
	apparently rough work for C ₆ H ₄ O(+)	C ₇ H ₈ (+)	
		$C_6H_5CH_3(^+)$	
		C ₆ H ₅ C (+)	
		$C_5O_2(^+)$	

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	Circles round H in OH and each H in		1
	CH ₃		
	ALLOW		
	OH and CH ₃ completely circled		

(Total for Question 4 = 15 marks)

TOTAL MARKS FOR PAPER = 50 MARKS