Write your name here		
Surname	Other nam	nes
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidiar Unit 3: Chemistry Lal	ry	
Tuesday 8 May 2018 – After Time: 1 hour 15 minutes	rnoon	Paper Reference WCH03/01
Candidates must have: Scient		Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Show all your working in calculations and give units where appropriate.

Turn over ▶

Answer ALL the questions. Write your answers in the spaces provided.

- 1 The inorganic compounds **A** and **B** contain the same Group 2 cation but different anions.
 - (a) Two tests were carried out on **A**. The observations made for each test are recorded in the table.
 - (i) Complete the statements in the inference column in the table by writing the names or formulae of the ions.

(3)

Test	Observation	Inference
Dilute sulfuric acid was added to an aqueous solution of A	A white precipitate formed	Two possible cations in A are
A sample of A was heated in a test tube	A brown gas was evolved	The anion in A is
A glowing splint was held in the mouth of the test tube	The splint relit	

(ii)	There were two gases evolved when A was heated; a brown gas C, and a
	gas D which relit the glowing splint.
	Identify the gases C and D by giving their name or formula.

(2)

Gas	C	 	 	 	 	 	 	
Gas	D							

(iii) Name a test that could be used to distinguish between the two cations identified in (a)(i).

Include the expected result of the test for **both** cations.

	ľ	n		'n
- 1		14	ĸ.	-1
- 1	١.	_		и

- (b) A test was carried out on **B**. The observations made for the test are recorded in the table.
 - (i) Complete the statement in the inference column in the table by writing the **formula** of the anion.

(1)

Test	Observation	Inference
Concentrated sulfuric acid was added to a sample of solid B in a test tube	An orange-brown gas E was evolved	The formula of the anion in B is

(ii)	Identify	v the	orange	e-brown	gas E	bv	aivina	its	name	or '	formu	lla.
١	,	I CA C I I C I I	,	Orarigo	- 0101111	945 =	. ~ ,	9 9	100	· · · · · · ·	0.		

(1)

Gas **E** is

(iii) Two colourless acidic gases were also evolved in the test in (b)(i).

These gases were dissolved in water.

Aqueous silver nitrate and dilute nitric acid were added to the solution and a cream precipitate formed.

Give the name or formula of the gas identified by this method.

(1)

(iv) Suggest the identity of the other acidic gas by giving its name or formula.

(1)

(Total for Question 1 = 12 marks)

This question is about an organic compound X. Information about compound X Molecular formula: C₄H₁₀O Test 1 Phosphorus(V) chloride was added to X. Steamy fumes were formed. (a) (i) Use all the information about **X** to identify the type of functional group present in X. (1) (ii) Draw the four possible structural isomers of **X**. Use your answer to (a)(i) and the molecular formula of X. (4) (b) Another test was carried out on X.

Test 2

A few drops of acidified potassium dichromate(VI) solution were added to ${\bf X}$ and the mixture was heated.

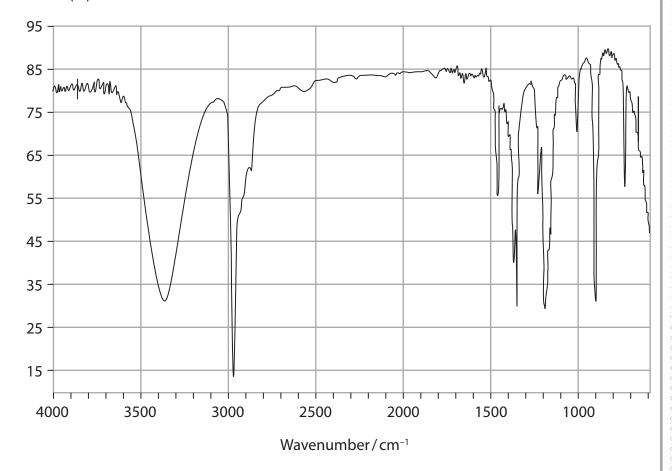
The mixture stayed orange.

Use the result of **Test 2** to further classify the functional group present in **X**.

(1)

(c) Use your answer to (b) to identify which of the four isomers of $C_4H_{10}O$ you have drawn in (a)(ii) is **X**.

(1)


(d) (i) Write the equation for the reaction between **X** and phosphorus(V) chloride. State symbols are not required.

(1)

(ii) The infrared spectrum of **X** is shown.

Transmittance (%)

Some data about infrared spectra are given in the table.

Group	Bond	Wavenumber/cm ⁻¹
alkane	C–H stretch	2962–2853
alkane	C–H bend	1485–1365
alcohol	O–H stretch	3750–3200

Circle the peak on the spectrum that will **not** be present in the infrared spectrum of the **organic product** of the reaction between **X** and phosphorus(V) chloride.

(1)

(Total for Question 2 = 9 marks)

- 3 This question is about the preparation of crystals of hydrated sodium sulfate.
 - (a) You are provided with the following apparatus and materials to prepare a solution of sodium sulfate from sulfuric acid and aqueous sodium hydroxide:
 - a burette, ready to use, filled with dilute sulfuric acid to the 0.00 cm³ line
 - an aqueous solution of sodium hydroxide
 - methyl orange indicator
 - access to other laboratory volumetric apparatus.

The equation for the reaction is

$$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$$

(i) A preliminary (rough) titration shows that about 18 cm³ of sulfuric acid is required to react with 25.0 cm³ of the aqueous sodium hydroxide.

Describe how you would carry out a second titration to find the accurate volume of sulfuric acid that reacts with 25.0 cm³ of the aqueous sodium hydroxide.

In your answer, you should include the colour change of the indicator at the end-point.

(5)

(ii) The results of three further titrations are shown in the table.

Titration number	Rough	1	2	3
Final burette reading/cm³	18.2	17.90	35.55	17.65
Initial burette reading/cm³	0.00	0.00	18.00	0.00
Titre/cm³	18.2	17.90	17.55	17.65
Used in mean (✓)				

Calculate the mean titre.

Show which titres you have used in your calculation by putting a tick (\checkmark) in the appropriate boxes in the table.

(1)

mean	titre	 cm ³

(iii) On the diagram of part of a burette, show the level of dilute sulfuric acid when the final burette reading is recorded in **Titration 3**.

(2)

17	
17	
18	
	I

(b) Using results from the table, briefly describe how to obtain a sample of pure crysta	S		
of hydrated sodium sulfate.	(2)		
(Total for Question 3 = 10 ma			

4 An experiment is carried out to determine the value of n in the formula of hydrated zinc sulfate, ZnSO₄.nH₂O.

The following procedure is used.

- Step 1 Weigh an empty crucible.
- Step 2 Add two spatula measures of hydrated zinc sulfate to the crucible. Reweigh the crucible with the hydrated zinc sulfate.
- Step 3 Heat the crucible and hydrated zinc sulfate to remove the water of crystallisation.
- Step **4** Allow the crucible to cool. Reweigh the crucible and the anhydrous zinc sulfate.

The equation for the reaction is

$$ZnSO_4.nH_2O(s) \rightarrow ZnSO_4(s) + nH_2O(g)$$

Results

Measurement	Value/g
Mass of empty crucible	13.26
Mass of crucible + contents before heating	16.71
Mass of crucible + contents after heating	15.30
Mass of contents before heating	3.45
Mass of contents after heating	
Mass of water lost	

(a) Draw a labelled diagram of the apparatus set up for heating in Step 3.

(2)

(b)	Со	mplete the table of results.	(1)	
(c)	(i)	Calculate the amount, in moles, of anhydrous zinc sulfate, ZnSO ₄ , left after hear	ting. (1)	
		amount of anhydrous zinc sulfate left =		. mol
	(ii)	Calculate the amount, in moles, of water lost during heating.	(1)	
		amount of water lost =		. mol
	(iii)	Calculate the value of n, using your answers to (c)(i) and (ii).	(1)	

(d) A data book gives the formula of hydrated zinc sulfate as ZnSO₄.7H₂O.

Two possible errors that might occur during the experiment are:

Error 1

Some of the hydrated zinc sulfate was lost from the crucible during heating in Step 3.

Error 2

The crucible was not heated for long enough for all of the water of crystallisation to be lost.

(i) Predict the effect, if any, each error will have on the measured mass of water lost and hence the calculated value of n.

(2)

		_		4
r	r	n	r	-

Effect on measured mass of water lost	
Effect on calculated value of n	
Error 2	
Effect on measured mass of water lost	
Effect on calculated value of n	
(ii) Suggest how you could improve the experiment to stop the hydrated zinc sulfa from 'jumping out' of the crucible during heating.	te
	(1)
(iii) Suggest how you could make sure that all the water of crystallisation is lost	
during heating.	(1)
(Total for Question 4 – 10 mar	dea)

BLANK PAGE

5 Ethyl ethanoate is a colourless liquid with a boiling temperature of 77 °C. It can be prepared by reacting ethanol with ethanoic acid.

$$C_2H_5OH(l) + CH_3COOH(l) \rightleftharpoons CH_3COOC_2H_5(l) + H_2O(l)$$

An outline procedure is given.

- Step **1** Mix 20 cm³ of ethanol and 20 cm³ of ethanoic acid in a pear-shaped flask and add anti-bumping granules.
- Step 2 Add 8 cm³ of concentrated sulfuric acid slowly, and with cooling.
- Step **3** Set up the apparatus for reflux, with the flask partially immersed in a water bath. Heat under reflux for 15 minutes.
- Step 4 Allow the apparatus to cool, and then rearrange the apparatus for distillation. Collect all the distillate up to 80 °C.
- (a) Give a reason why anti-bumping granules are used in Step ${\bf 1}.$

(1)

(b) Suggest a reason why the mixture is cooled as the concentrated sulfuric acid is added in Step 2.

(1)

(c) Give a reason why the flask is heated in a water bath, rather than directly with a Bunsen flame, in Step 3.

(1)

(d) Give a reason why the mixture is heated under reflux in Step 3.

(1)

The ethyl ethanoate is purified as follows:

- Step 5 Place the distillate from Step 4 in a separating funnel and add 10 cm³ of sodium carbonate solution. Shake the separating funnel carefully, releasing the pressure at regular intervals. Allow the layers to separate and then remove the lower, aqueous layer.
- Step 6 Transfer the ethyl ethanoate to a dry flask. Add anhydrous calcium chloride, stopper the flask and leave to stand for 30 minutes.
- Step 7 Pour the ethyl ethanoate into a clean pear-shaped flask. Distil and collect the pure ethyl ethanoate.
- (e) (i) Identify the gas released when sodium carbonate solution is added to the distillate in the separating funnel in Step 5.

(ii) Describe how to release the pressure in the separating funnel in Step 5.

			_	٠.
- 1	r	۶		٦
н				

(f) (i) Give a reason why anhydrous calcium chloride is added to the ethyl ethanoate in Step 6.

(1)

(ii) Suggest a reagent that could be used as an alternative to anhydrous calcium chloride in Step 6.

(1)

(g) Give a suitable temperature **range** over which to collect the pure ethyl ethanoate during the final distillation in Step 7.

(1)

(Total for Question 5 = 9 marks)

TOTAL FOR PAPER = 50 MARKS

The Periodic Table of Elements

		_		
0 (8)	(18)	40	? :	e e
7				
9				
2				
4				
٣				
		1.0	I	hydrogen
2				

(18)	4.0	Helium Helium	2	20.2	Š	neon	10	39.9	Ā	argon 18	83.8	추	krypton	36	131.3	×	xenon 54	[222]	윤	radon 86		ted		
			(17)	19.0	ш	fluorine	6	35.5	บ	chlorine 17	79.9	Б	bromine	35	126.9	_	iodine 53	[210]	Αt	astatine 85		een repor		
			(16)	16.0	0	oxygen	80	32.1	s	sulfur 16	79.0	Se	selenium	34	127.6	Ъ	tellurium 52	[209]	8	polonium 84		116 have b	nticated	
			(15)	14.0	z	nitrogen	7	31.0	۵	phosphorus 15	74.9	As	arsenic	33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		Elements with atomic numbers 112-116 have been reported	but not fully authenticated	
			(14)	12.0	U	carbon	9	28.1	Si	silicon 14	72.6	g	germanium	32	118.7	S	£ 5	207.2	ď	lead 82		atomic nu	but not f	
			(13)	10.8	æ	poron	2	27.0	₹	aluminium 13	69.7	g	gallium	31	114.8	드	indium 49	204.4	F	thallium 81		nents with		
										(12)	65.4	Zu	zinc	30	112.4	8	cadmium 48	200.6	Ŧ	mercury 80	L			
										(11)	63.5	J	copper	59	107.9	Ag		197.0	Αn	gold 79	[272]	Rg	roentgenium	111
										(10)	58.7	ź	nickel	28	106.4	В	palladium 46	195.1	చ	platinum 78	[271]		darmstadtium	110
_			_							6)	58.9	ပိ	cobalt	27	102.9	윤	rhodium 45	192.2	1	iridium 77	[368]	¥	meltnerium	109
,	2:	hydrogen	-							(8)	55.8	Fe	iron	56	101.1	æ	ruthenium 44	190.2	õ	osmium 76	[277]	£	hassium	108
										(2)	54.9	W	Ê	25	[86]	卢	technetium 43	186.2	Re	rhenium 75		絽		107
				mass	lod		number			(9)	52.0	ъ	vanadium chromium	24	95.9	W	molybdenum 42	183.8	>	tungsten 74	[596]	Sg	seaborgium	106
			Key	relative atomic mass	atomic symbol	name	atomic (proton) number			(5)	50.9	>	vanadium	23	92.9	ą	niobium 41	180.9	Ta	tantalum 73	[292]	8	dubniu	105
				relat	atc		atomic			4	47.9	F	titanium	22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	¥	nutherfordium	104
				_						(3)	45.0	S	scandium	21	88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227]	¥c*	actinium	68
			(2)	9.0	Be	beryllium	4	24.3	Mg	magnesium 12	40.1	S	_	20	87.6	S	strontium 38	137.3	Ва	barium 56	[326]	Ra	radium	88
			(1)	6.9	:5	lithium	3	23.0	Na	sodium 11	39.1	¥	potassium	19	85.5	&	rubidium 37	132.9	ပ	caesium 55	[223]	Ŀ	francium	87

Lanthanide series

Actinide series

175 Lu Iutetium 71	[257] Lr lawrencium 103
173 Yb ytterbium 70	[254] No nobelium 102
169 Tm thulium 69	[256] Md mendelevlum 101
167 Er erbium 68	[253] Fm fermium 100
165 Ho holmium 67	[254] Es einsteinium 99
163 Dy dysprosium 66	[251] Cf californium 98
159 Tb terbium 65	[245] BK berkelium 97
157 Gd gadotinium 64	[247] Cm curum 96
152 Eu europium 63	[243] Am americium 95
Sm samarium 62	[242] Pu plutonium 94
[147] Pm promethium 61	[237] Np neptunium 93
144 Nd neodymium 60	238 U uranium 92
Pr Praecodymium 59	232 [231] Th Pa thorium protectinium 90 91
Cerium S8	232 Th thorium 90

16