Surname	Other i	names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidiar Unit 1: The Core Prin	ry	nistry
Friday 26 May 2017 – Morn Time: 1 hour 30 minutes	ning	Paper Reference WCH01/01

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P48382A
©2017 Pearson Education Ltd.

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

1 Sea water contains 2.7 mg of sulfate ions per kilogram.

What is the concentration of sulfate ions in parts per million by mass?

- **A** 2.7×10^{-6}
- **B** 2.7×10^{-3}
- **∠ C** 2.7
- \square **D** 2.7 × 10³

(Total for Question 1 = 1 mark)

2 How many ions are in 284 g of sodium sulfate, Na₂SO₄?

Avogadro constant = $6.0 \times 10^{23} \, \text{mol}^{-1}$

Molar mass of sodium sulfate = $142 \,\mathrm{g} \,\mathrm{mol}^{-1}$

- **A** 1.2×10^{24}
- **B** 2.4×10^{24}
- \square **C** 3.6 × 10²⁴
- \square **D** 8.4 × 10²⁴

(Total for Question 2 = 1 mark)

3 Calculate the empirical formula of the compound with the percentage composition by mass: Li = 17.9%; P = 26.8%; O = 55.3%

Molar masses $/ g \text{ mol}^{-1}$ Li = 6.9, P = 31.0, O = 16.0

- \square **A** Li₂P₃O₆
- B Li₃PO₃
- \square **D** Li₃PO₄

(Total for Question 3 = 1 mark)

4 What is the empirical formula of the oxide formed when 2.6 g of chromium produces 3.8 g of chromium oxide?

Molar masses $/ \text{ g mol}^{-1} \text{ Cr} = 52.0, O = 16.0$

- 🛛 A CrO
- B CrO₂
- \square C Cr_2O_3
- \square **D** Cr_3O_4

(Total for Question 4 = 1 mark)

5 Consider the reaction

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

What is the maximum volume, in dm³, of sulfur trioxide that could be obtained when 0.5 dm³ of sulfur dioxide is mixed with 1 dm³ of oxygen, under suitable conditions?

All measurements are made at the same temperature and pressure.

- **⋈ A** 0.5
- **B** 1.5
- **◯ C** 2.0
- ☑ D 2.5

(Total for Question 5 = 1 mark)

- **6** Identify the atom with two unpaired electrons in its lowest energy state (ground state).
 - 🖾 A Be
 - B C
 - C CI
 - **D** Ca

(Total for Question 6 = 1 mark)

- **7** Which ion has the **largest** ionic radius?
 - A Ca²⁺
 - B Cl⁻
 - C K⁺
 - \square **D** S^{2-}

(Total for Question 7 = 1 mark)

- **8** The compound with the greatest covalent character is
 - 🛛 A NaF
 - **B** NaI
 - C AIF₃
 - \boxtimes **D** AlI₃

(Total for Question 8 = 1 mark)

9 What is the sequence of the orbitals from which electrons are removed in the first four ionisations of boron?

X	Α

X C

X D

1st Ionisation	2nd Ionisation	3rd Ionisation	4th Ionisation
1s	1s	2s	2s
1s	2s	2s	2p
2p	2s	2s	1s
2p	2s	1s	1s

(Total for Question 9 = 1 mark)

10 Calcium chloride can be prepared by reacting calcium carbonate with dilute hydrochloric acid.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

(a) The ionic equation for the reaction is

(1)

- \square A $Ca^{2+}(s) + 2Cl^{-}(aq) \rightarrow CaCl_{2}(aq)$
- \blacksquare **B** $CaCO_3(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + H_2O(l) + CO_2(g)$
- $CO_3^{2-}(s) + 2H^+(aq) \rightarrow H_2O(l) + CO_2(q)$
- \square CaCO₃(s) + 2H⁺(aq) + 2Cl⁻(aq) \rightarrow CaCl₂(aq) + H₂O(l) + CO₂(g)
- (b) An excess of calcium carbonate is used in the preparation. The sequence of processes needed to obtain crystals of calcium chloride from the reaction mixture is

(1)

- ☑ A filtering, concentrating the solution, slowly evaporating.
- **B** filtering, slowly evaporating, distilling.
- **C** concentrating the solution, filtering, distilling.
- **D** concentrating the solution, slowly evaporating, filtering.
- (c) The excess calcium carbonate was added to 100 cm³ of 2.00 mol dm⁻³ hydrochloric acid. The mass of calcium chloride crystals obtained was 10.4 g.

Molar mass of calcium chloride crystals, $CaCl_{2} \cdot 2H_{2}O = 147 \text{ g mol}^{-1}$.

The percentage yield, by mass, of calcium chloride crystals is

(1)

- **⋈ A** 71.2
- **B** 70.7
- **◯ C** 35.4
- **■ D** 17.7

(Total for Question 10 = 3 marks)

- 11 Which of the following series shows the elements in order of increasing melting temperature?
 - 🛛 A Li, Na, K
 - ☑ B Al, Si, P
 - C Na, Mg, Al
 - S, Cl, Ar

(Total for Question 11 = 1 mark)

12 Consider the reaction

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$
 $\Delta H = -9.0 \text{ kJ mol}^{-1}$

The bond energy of $H-H = 436 \text{ kJ} \text{ mol}^{-1}$

The bond energy of $H-I = 298 \text{ kJ mol}^{-1}$

It can be deduced that the bond energy of I—I, in kJ mol⁻¹, is

- **■ B** 84.5
- **C** 151
- ☑ D 169

(Total for Question 12 = 1 mark)

13 What is the systematic name for the hydrocarbon shown?

- ☑ B 2-ethyl-4,4-dimethylpentane
- **C** 3,5,5-trimethylhexane
- **D** 2,2,4-trimethylhexane

(Total for Question 13 = 1 mark)

- **14** Which compound has *E-Z* isomers?
 - A but-1-ene
 - B but-2-ene
 - ☑ C 1,1-dichloroethene
 - **D** 2-methylbut-2-ene

(Total for Question 14 = 1 mark)

15 Which compound has an empirical formula different from its molecular formula?

- A

- □ D
 □

(Total for Question 15 = 1 mark)

16 Which reagent reacts with propene to form this compound?

- A hydrogen peroxide solution
- B oxygen and water
- C aqueous sodium hydroxide
- D acidified potassium manganate(VII)

(Total for Question 16 = 1 mark)

17 Propene reacts with hydrogen bromide to form

- A a mixture of 1-bromopropane and 2-bromopropane
- B 1,2-dibromopropane
- C 2-bromopropan-1-ol
- D 1-bromopropan-2-ol

(Total for Question 17 = 1 mark)

18 Copolymers are formed from two different monomers.

The repeat unit of a copolymer is

This copolymer is formed from ethene and

- **A** propane.
- **B** propene.
- **D** 2-methylbut-1-ene.

(Total for Question 18 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

19 A sample of an element, **X**, was extracted from a meteorite.

The table gives the percentage abundance of the isotopes of **X** obtained from the mass spectrum of the sample.

m/e	% abundance
54	6.10
56	92.0
57	1.90

(a) (i) Calculate the relative atomic mass of the element in this sample.

Give your answer to **three** significant figures.

(2)

(ii) Identify **X** and hence give the numbers of subatomic particles present in the species at m/e = 56 in the mass spectrum.

(2)

X

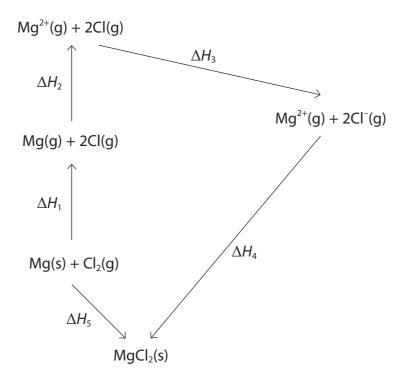
Number of _I	Number of particles present in the species at $m/e = 56$		
protons	electrons	neutrons	

(iii) A peak at $m/e = 28$ was also detected in the mass spectrum of X . Identify the species which produced this peak.	(1)
(iv) Explain why the three isotopes of X have the same chemical properties.	(2)
(b) (i) Outline how a solid sample of element X is converted into ions in a mass spectrometer.	(2)
(ii) Following the formation of ions, there are three steps in the production of a spectrum in the mass spectrometer.Name the three steps in order and state how the first two are carried out.	(3)
(Total for Question 19 = 12 m	narks)

20 (a)		e element sc om temperat		compound s	sodium bro	mide are both solid	at	
	(i)	Name the to		ng in sodium	and explain	how this bonding	holds the	
		or acture to	gemen					(2)
	(ii)		ype of bondir tructure toget		bromide an	d explain how this	bonding	(1)
								(1)
	(iii)	The table s	nows the mel	ting temperat	tures of sod	ium and of sodium	bromide.	
			Subs		Sodium	Sodium bromide		
				perature / K	371	1020		
		What can ye			about the	bonding in the two	substance	es?
		ŕ				J		(1)

	Describe how this property differs for each of the two substances.	(2)
		(4)
(b) Th	e ammonium ion, NH ⁺ , contains covalent bonds and a dative covalent bond.	
(i)	Describe the difference between a covalent bond and a dative covalent bond.	(0)
		(2)
(ii)	Draw a dot and cross diagram for an ammonium ion. Use the symbol x for electrons the budge gap at any and a few electrons from the custom shall of the pitters.	
	from the hydrogen atoms and • for electrons from the outer shell of the nitrog	(2)
(iii	Suggest how an electron density map of ammonium chloride would provide evidence for the presence of ions in the compound.	
		(1)

21 (a) The table below shows some of the ionisation energies of magnesium.


	First	Second	Third	Fourth	Fifth
Ionisation energy / kJ mol ⁻¹	738	1451		10541	13629

(i) Complete the table by predicting a value for the **third** ionisation energy of magnesium.

(1)

(ii) Write the equation for the third ionisation of magnesium. Include state symbols. (2)

(b) A version of the Born-Haber cycle for magnesium chloride is shown below.

(i) Identify the enthalpy changes from the Born-Haber cycle by completing the table. ΔH_1 is the sum of **two** enthalpy changes and you should give both.

Enthalpy change	Identity of enthalpy change
ΔH_1	
ΔH_3	
ΔH_5	

(ii) Use the data in (a) to calculate the value of ΔH_2 .

(1)

$$\Delta H_2 =$$

(iii) Use your answer to (ii) and the following data to calculate the lattice energy of magnesium chloride, ΔH_4 .

Enthalpy change	nge Value of enthalpy change / kJ mol	
ΔH_1	+391.1	
ΔH_3	-697.6	
ΔH_5	-641.3	

(2)

*(i) In the calcium chloride cycle, the cor Explain why this is so.	responding value for ΔH_2 is	ess positive.
		(2)
*(ii) Explain why the value for the lattice calcium chloride than for magnesiun		for
		(2)

BLANK PAGE

22 Sodium hydrogencarbonate decomposes on heating to form sodium carbonate, carbon dioxide and water.

Reaction 1 $2NaHCO_3(s) \rightarrow Na_2CO_3(s) + H_2O(l) + CO_2(g)$

(a) Suggest why it is difficult to measure the enthalpy change of this reaction directly.

1)

(b) The enthalpy change can be measured indirectly using the enthalpy changes for the following two reactions and applying Hess's Law.

Reaction 2 NaHCO₃(s) + HCl(aq) \rightarrow NaCl(aq) + H₂O(l) + CO₂(g)

Reaction 3 Na₂CO₃(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H₂O(l) + CO₂(g).

An experiment was carried out to measure the enthalpy change of **Reaction 2**.

100 cm³ of 1.25 mol dm⁻³ hydrochloric acid was placed in a polystyrene beaker with capacity 200 cm³. The initial temperature of the acid was 21.5 °C.

 $8.00\,\mathrm{g}$ of solid sodium hydrogencarbonate was added, a lid was placed on the beaker and the mixture was stirred. The lowest temperature of the mixture was $14.2\,^{\circ}\mathrm{C}$.

(i) Explain why the beaker used in this experiment is large.

(1)

(ii) Show by calculation that the hydrochloric acid is present in excess.

(2)

(iii) Calculate the energy transferred and hence the enthalpy change of the reaction in kJ mol⁻¹.

Include a sign and units in your answer.

Use the equation: Energy transferred (J) = $100 \times 4.18 \times$ temperature change.

(3)

(iv) The enthalpy change for **Reaction 3** was found to be -36.3 kJ mol⁻¹.

Complete the Hess cycle by adding the appropriate arrows and formulae to the outline.

Use your completed cycle to calculate the enthalpy change for **Reaction 1**.

(4)

Reaction 1

$$Na_2CO_3(s) + H_2O(l) + CO_2(g)$$

 ΔH for **Reaction 1** =kJ mol⁻¹

(Total for Question 22 = 11 marks)

	Ethane reacts with chlorine Chloroethane, C₂H₅Cl and o	e in the presence of ultraviolet light forming other products.	
	i) Ultraviolet light causes	homolytic fission of chlorine molecules.	
		iagram of a chlorine molecule and use it to explain colecule when homolytic fission occurs, naming the	(2)
Equatio	producing chloroethan	the two propagation steps which occur in the reaction e.	(2)
Equatio	n 2:		

(iii) Write the equation for the termination step which produces a hydrocarbon as a product in this reaction.	(1)
(b) Ethene also reacts with chlorine but by a different mechanism. $*(i)$ Describe how the π bond in ethene forms and explain why this bond causes	
ethene to take part in addition reactions with halogens.	(2)
*(ii) Write the mechanism for the reaction of ethene with chlorine.	
Use curly arrows to show movements of electron pairs.	(3)

(iii) Name the product of the reaction of chlorine with ethene.

(1)

(c) The halogenoalkene,1-chloroethene, is used to make a widely used polymer, poly(chloroethene), commonly known as PVC.

Write a balanced equation for the polymerisation of 1-chloroethene to PVC.

Use displayed formulae to show the bonds in both the monomer and the polymer.

(2)

(Total for Question 23 = 13 marks)

TOTAL FOR SECTION B = 60 MARKS
TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

+	2
Da	5
70	5
ш	í
J	5
0	ر
Tah	2
(ر
τ	5
٩.	2
Dor	5
Lho	2

0 (8)

9

2

i.	[222] Rn radon 86	9 00 +	ي .	ton 6	00	6: <u>1</u> 00 8	0 % e .7	(8) (a)
ported	Value of the same	xenon 54	•	e krypton 36		39.9 Ar argon 18	20.2 Ne neon 10	(18) 4.0 He hettum 2
peen rel	[210] At astatine 85	iodine 53	126.9	bromine 35	79.9	35.5 Cl chlorine 17	19.0 F fluorine 9	(17)
116 have	Po polonium 84	le tellurium 52	127.6	selenium 34	79.0	32.1 Solfur 16	16.0 O oxygen 8	(16)
tomic numbers 112-116 hav but not fully authenticated	209.0 Bi bismuth 83	SD antimony 51	121.8	arsenic 33	74.9	31.0 P phosphorus 15	14.0 N nitrogen 7	(15)
stomic nun but not fu	207.2 Pb tead 82	20 tt 20	118.7	germanium 32	72.6	Si silicon	12.0 C carbon 6	(14)
Elements with atomic numbers 112-116 have been reported but not fully authenticated	204.4 TI thailium 81	indium 49	114.8	gallium g	2.69	27.0 Al aluminium 13	10.8 B boron 5	(13)
Etem	200.6 Hg mercury 80	cadmíum 48	112.4	3 th C	65.4	(21)		8
[272] Rg roentgenlum	197.0 Au gold 79	Ag silver 47	107.9	copper 29	63.5	(11)		
	195.1 Pt platinum 78	Pa palladium 46	106.4	nicket 28	58.7	(10)		
[268] [271] Mt Ds metrnerium damstadtum 1.00 1.10	192.2 Ir irridium 77	rhodium 45	102.9	cobalt 27	58.9	(6)		
Hs Hassium n	190.2 Os osmium 76	Ku ruthenlum 44	101.1	iron 26	55.8	(8)		1.0 Hydrogen
[264] Bh bohrium	Re Thenium 75		[86]	nanganese 25	54.9	0		
Sg seaborgium	183.8 W tungsten 74	MO IC molybdenum technetium 42 43	95.9	chromium manganese 24 25	52.0	(9)	ol ol	
[262] Db dubnium s	Ta tantalum 73	niobium #	92.9	vanadium c	50.9	(5)	relative atomic mass atomic symbol name atomic (proton) number	Key
[261] Rf nutherfordium	Hf Hafmium 72	Zirconlum 40	91.2	titanium v	47.9	(4)	atoric (p.0
Ac*	La* lanthanum 57	yttrium z	88.9	scandium 21	45.0	(3)		
Ra radium	137.3 Ba barlum la	Strontium 38	87.6	calcium s	40.1	24.3 Mg magnesium 12	9.0 Be beryllium 4	(2)
[223] Fr francium 87	Cs Cs caesium 55	KD ubidium s	85.5	potassium 19	39.1	Na Sodium n	6.9 Li lithium t	(1)

· Lanthanide series

Actinide series

Ce	Pr praseodymium	Nd neodymium	Pm promethium	Sm samarium	Eu europium	Gd muinilobeg	terblum	Dy dysprosium	Holmium	Er erblum	Tm thullum	7b ytterbium	Lu lutetium
28	26	09	61	62	63	64	9	99	29	89	69	70	71
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
£	Pa	_	ď	Pu	Am	£	æ	უ	Es	Fa	PW	9	ב
norium	protactinium	uranium	neptunium	plutonium	americium	aurum	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrenciun
06	91	92	93	94	95	96	26	86	66	100	101	102	103