Surname	Other na	ames
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidiar Unit 1: The Core Prin	ry	•
	icipies of Chen	iistry
Wednesday 11 January 201 Time: 1 hour 30 minutes		Paper Reference WCH01/01

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

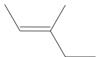
- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P48367A
©2017 Pearson Education Ltd.

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ₩ and then mark your new answer with a cross ⋈.


- 1 The Avogadro constant is equal to the number of
 - A atoms in one mole of any element.
 - **B** atoms in one mole of any monatomic element.
 - **C** atoms in one mole of any compound.
 - **D** ions in one mole of an ionic compound.

(Total for Question 1 = 1 mark)

- **2** When ethane reacts with chlorine, a mixture of products forms. Which product is the **best** evidence for a free radical mechanism?
 - A HCl
 - \blacksquare **B** C₄H₁₀
 - C C₂H₅Cl
 - \square **D** $C_2H_4Cl_2$

(Total for Question 2 = 1 mark)

3 What is the systematic name for the compound shown below?

- **A** *E*-3-methylpent-2-ene
- **B** *E*-3-methylpent-3-ene
- ☑ D Z-3-methylpent-3-ene

(Total for Question 3 = 1 mark)

- **4** How many straight chain isomers have the molecular formula C₃H₅Cl?
 - A 3
 - **■ B** 4
 - **C** 5
 - **D** 6

(Total for Question 4 = 1 mark)

5 100 cm³ of methane, CH₄, is completely burned in 400 cm³ of oxygen.

What is the final volume of the gas mixture, in cm³, when all volumes are measured at room temperature and pressure?

- B 200
- **C** 300
- **D** 400

(Total for Question 5 = 1 mark)

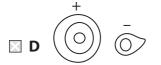
6 In the United Kingdom, the limit for gaseous hydrocarbons in vehicle exhaust gases is 200 ppm.

What is the maximum volume of gaseous hydrocarbons allowed in 10 mol of exhaust gases, at room temperature and pressure?

[Molar volume = $24 \text{ dm}^3 \text{ mol}^{-1}$]

- **B** 48 cm³
- ☑ C 96 cm³
- D 480 cm³


(Total for Question 6 = 1 mark)


7			of these statements is the best evidence for the existence of ions in m chloride?
	X	A	Solid sodium chloride conducts electricity.
	X	В	When an electric current is passed through a solution of sodium chloride, the movement of the coloured ions is observed.
	X	C	Sodium chloride crystals have a regular shape.
	X	D	There is good agreement between theoretical and experimental lattice energies for sodium chloride.
			(Total for Question 7 = 1 mark)
_			
8	VVI		ion has the smallest ionic radius?
	X	A	Cl-
	X	В	Ca ²⁺
	X	C	$K^{\scriptscriptstyle{+}}$
	X	D	S ²⁻
_			(Total for Question 8 = 1 mark)
9	Wł	nich	quantity is exothermic?
	X	A	Enthalpy change of atomisation of sulfur.
	X	В	First ionisation energy of sulfur.
	X	C	First electron affinity of sulfur.
	X	D	Second electron affinity of sulfur.
			(Total for Question 9 = 1 mark)

10 Which diagram **best** represents the electron densities in lithium iodide?

(Total for Question 10 = 1 mark)

11 Which equation represents the lattice energy of magnesium nitride, Mg₃N₂?

$$\square$$
 A 3Mg(s) + N₂(g) \rightarrow Mg₃N₂(s)

$$\square$$
 B 3Mg(g) + 2N(g) \rightarrow Mg₃N₂(s)

$$\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \hline \end{$$

(Total for Question 11 = 1 mark)

- **12** In which pair are the ions isoelectronic?
 - A Li⁺ and O²⁻
 - B Na⁺ and Cl⁻
 - \square **C** Mg²⁺ and S²⁻
 - \square **D** Al³⁺ and F⁻

(Total for Question 12 = 1 mark)

- **13** The following statements give information about the thermodynamic stability of magnesium chlorides.
 - MgCl is stable with respect to chlorine and magnesium.
 - MgCl is unstable with respect to MgCl₂ and Mg.
 - MgCl₃ is unstable with respect to chlorine and magnesium.

Which signs of the standard enthalpy changes of formation of MgCl and MgCl₃ are correct?

		$\Delta H_{\rm f}^{\oplus}$ [MgCl(s)]	$\Delta H_{\rm f}^{\oplus}$ [MgCl ₃ (s)]
X	A	negative	negative
X	В	positive	negative
X	C	negative	positive
X	D	positive	positive

(Total for Question 13 = 1 mark)

- **14** In the electrolysis of copper(II) chromate(VI) solution, the colour that develops around the positive electrode (anode) is
 - **A** orange.
 - **B** yellow.
 - C green.
 - **D** blue.

(Total for Question 14 = 1 mark)

15 When 10 cm³ of a nitric acid solution reacts with 20 cm³ of a sodium hydroxide solution, the temperature rise is ΔT .

Repeating the reaction with 15 cm³ of the same nitric acid solution and 30 cm³ of the same sodium hydroxide solution would give a temperature rise of

- \triangle **A** 0.5 \triangle T
- \square **B** 0.67 ΔT
- \square C ΔT
- \square **D** 1.5 $\triangle T$

(Total for Question 15 = 1 mark)

- **16** How many moles of **ions** are present in 30 cm³ of 0.025 mol dm⁻³ barium hydroxide solution, Ba(OH)₂(aq)?

 - **■ B** 0.00150
 - **C** 0.00225
 - ☑ **D** 0.00450

(Total for Question 16 = 1 mark)

17 When 1.270 g of copper ($A_r = 63.5$) is added to excess silver nitrate solution, 4.316 g of silver ($A_r = 107.9$) forms.

The ionic equation for the reaction is:

- \square **A** Cu(s) + 2Ag⁺(aq) \rightarrow Cu²⁺(aq) + 2Ag(s)
- \square **B** $2Cu(s) + Ag^{2+}(aq) \rightarrow 2Cu^{+}(aq) + Ag(s)$
- \square C Cu(s) + Ag²⁺(aq) \rightarrow Cu²⁺(aq) + Ag(s)
- \square **D** Cu(s) + Aq⁺(aq) \rightarrow Cu⁺(aq) + Aq(s)

(Total for Question 17 = 1 mark)

- **18** The process with the highest atom economy is the production of
 - \square **A** propene by cracking eicosane, $C_{20}H_{42}$.
 - B 1-chloropropane from propane and chlorine.
 - **C** cyclohexene by reforming hexane.
 - D poly(propene) by polymerising propene.

(Total for Question 18 = 1 mark)

19 Which hazard symbol must be displayed on a bottle containing hexane?

1 (

K

20 Which is a free radical?

- A OH
- B OH[−]
- \boxtimes **C** OH₂
- \square **D** OH_3^+

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

BLANK PAGE

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

21 This question is about cyclohexene which can be used to show the reactions of the alkenes.

Cyclohexene

Data: Boiling temperature = 83 °C

Density = 0.81 g cm^{-3}

(a) (i) 1 cm³ of bromine water is shaken with 2 cm³ of cyclohexene in a test tube and the mixture allowed to stand.

Describe what you would **see** before and after shaking.

(3)

/::\	Draw the skeletal	formula of the	major ora	anic product	of thic roaction
1111	Diaw the Skeletal	TOTTIUIA OF THE	maior oru	anic broduct	or uns reaction

(1)

(b) Draw the skeletal formula and give the name of the organic product formed when cyclohexene reacts with potassium manganate(VII) mixed with dilute sulfuric acid.

(2)

Skeletal formula

Name

(c) Suggest the skeletal formula of the polymer that would be formed if cyclohexene polymerised. Show **two** repeat units.

(2)

(Total for Question 21 = 8 marks)

22	This question is about a preparation of hydrated zinc sulfate crystals.	
	An excess of powdered zinc is added to 20 cm ³ of 1.00 mol dm ⁻³ sulfuric acid.	
	(a) (i) State two observations you would make during this reaction.	(2)
	(ii) Write the ionic equation for this reaction. Include state symbols.	(2)
	*(b) When the reaction is complete, a solution of zinc sulfate is formed. Some unre	acted
	zinc is left. Describe how pure dry crystals of hydrated zinc sulfate may be obtained from	
	zinc is left. Describe how pure dry crystals of hydrated zinc sulfate may be obtained from	
		this mixture.

(c) (i) The formula of the hydrated zinc sulfate crystals is ZnSO₄.7H₂O.

Calculate the molar mass of ZnSO₄.7H₂O.

(1)

(ii) Calculate the number of moles of sulfuric acid in 20.0 cm³ of a 1.0 mol dm⁻³ solution.

(1)

(iii) 4.00 g of hydrated zinc sulfate crystals form.

Calculate the percentage yield of hydrated zinc sulfate.

Give your answer to **two** significant figures.

(2)

(Total for Question 22 = 12 marks)

23	This	puestion is about the gases propane, C_3H_8 , and butane, C_4H_{10} .	
	(a) (i)	Propane and butane are both alkanes. Alkanes are said to belong to the same 'homologous series'.	
		Give two characteristics associated with homologous series.	(2)
			(2)
	(ii) Butane has a structural isomer but propane does not.	
		State what is meant by a structural isomer and explain why butane has a structural isomer but propane does not.	(2)
		Structural isomer	
		Explanation	
		ottled propane is used as the fuel for the burners in hot air balloons. A hot air alloon carries 80 kg of liquefied propane.	
	(i)	Write the equation for the complete combustion of propane in air under standard conditions. State symbols are not required.	
			(2)

(ii) Calculate the number of moles of propane in 80 kg.

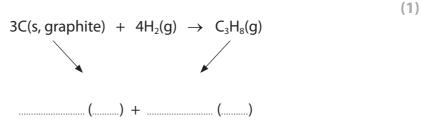
(2)

(iii) The standard enthalpy change of combustion of propane, $\Delta H_{c,298}^{\oplus} = -2220 \text{ kJ mol}^{-1}$. Calculate the heat energy, in joules, given out when 80 kg of propane burns completely.

(iv) The burners have a maximum power rating of 4800 W. $(1 \text{ W} = 1 \text{ J s}^{-1})$

Calculate the maximum time, in **hours**, that the balloon's fuel would last if the burners are used continuously on full power with 80 kg of fuel.

(1)


(v)	A student suggests that butane would be a better fuel for hot air balloons
	than propane because it has a more negative enthalpy change of combustion,
	$\Delta H_{\text{con}}^{+} = -2880 \text{ k} \cdot \text{mol}^{-1}$

Suggest two reasons why butane is **not** a better fuel than propane for hot air balloons.

7	7	١
1	4	J

Reason one
Reason two

- (c) The standard enthalpy changes of atomisation of propane and butane can be calculated. The calculation requires their standard enthalpy changes of formation and the standard enthalpy changes of atomisation of carbon and hydrogen.
 - (i) Complete the Hess cycle for the calculation of the standard enthalpy change of atomisation of propane.

(ii) Calculate the standard enthalpy change of atomisation of propane, $\Delta H_{at,298}^{\ominus}[C_3H_8(g)]$

Use the data below.

$$\Delta H_{f,298}^{\oplus}[C_3H_8(g)] = -104.5 \text{ kJ mol}^{-1}$$

$$\Delta H_{\text{at,298}}^{\oplus}[\frac{1}{2}H_2(g)] = +218 \text{ kJ mol}^{-1}$$

$$\Delta H_{\text{at,298}}^{\oplus}$$
[C(s, graphite)] = +716.7 kJ mol⁻¹

P 4 8 3 6 7 A 0 1 7 2 4

(3)

(iii) The standard enthalpy change of atomisation of butane can be calculated using the same method as for propane. This value, together with the carbon-hydrogen bond energy, can be used to calculate the carbon-carbon bond energy

$$\Delta H_{at,298}[C_4H_{10}(g)] = +5173.3 \text{ kJ mol}^{-1}.$$

$$E(C-H) = +412.3 \text{ kJ mol}^{-1}$$

Calculate the carbon-carbon bond energy.

(2)

(iv) Suggest why your answer differs from the mean bond energy for the carbon-carbon bond given in data books.

(1)

(Total for Question 23 = 19 marks)

- 24 This question is about the alkali metal potassium and the salt potassium chloride.
 - (a) (i) A sample of potassium is known to consist of isotopes with mass numbers 39 and 41.

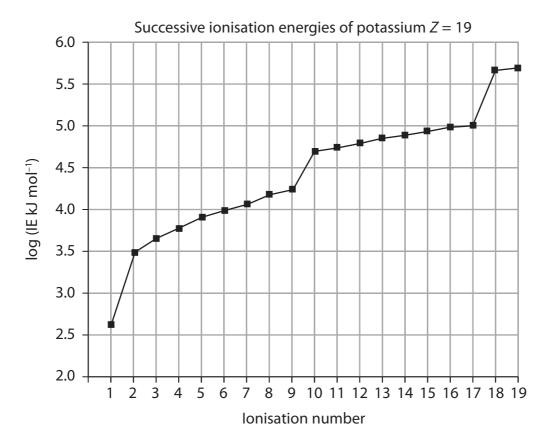
For each isotope, complete the table below to show the numbers of protons, neutrons and electrons.

(2)

Isotope mass number	Number of protons	Number of neutrons	Number of electrons
39			
41			

(ii) Explain the meaning of the term isotope, using the information from the table in (a)(i).

(1)


(iii)	The relative	atomic mass	of this	sample	of p	otassium	is	39.	1
()	c . c.ac. v c	aconne mass	05	Jampie	۷. ۲	o cassiaiii			•

Calculate the percentage abundance of each isotope.

(2)

(b) The chart below shows the successive ionisation energies of potassium.

(i) Estimate the 1st ionisation energy and the 19th ionisation energy of potassium. Use data from the graph and your calculator.

(1)

(ii) Explain why the logarithm of the ionisation energy is used in plotting this graph rather than the ionisation energy.

(1)

(iii)	Write the equation for the first ionisation energy of potassium.	(2)
*(iv)	Explain why there is a general rise in the value of the successive ionisation energies.	(2)
		(2)
*(v)	Explain each of the three sharp rises in the graph.	
	You should include details of the subshell from which the electron is removed at each sharp rise.	(3)
	You should include details of the subshell from which the electron is removed	(3)
	You should include details of the subshell from which the electron is removed	(3)
	You should include details of the subshell from which the electron is removed at each sharp rise.	
	You should include details of the subshell from which the electron is removed	
	You should include details of the subshell from which the electron is removed at each sharp rise.	
	You should include details of the subshell from which the electron is removed at each sharp rise.	
	You should include details of the subshell from which the electron is removed at each sharp rise.	

	TOTAL FOR SECTION B = 60 MAR	KS
	(Total for Question 24 = 21 mar	ks)
	potassium chloride.	(1)
(iv)	Give one difference between the structures of potassium metal and	
(iii)	Describe two similarities in the structure and bonding of potassium metal and potassium chloride.	(2)
(ii)	Compare the electrical conductivity of potassium metal and potassium chloride	. (2)
	Only show the electrons in the outer shell of both ions.	(2)
(c) (i)	Draw a dot and cross diagram for potassium chloride.	

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

The Periodic Table of Elements

reported	At Kn astatine radon 85 86	_	iodine xenon 53 54	126.9 131.3 I Xe	bromine krypton 35 36	-	CI Ar chtorine argon 17 18	35.5 39.9	Luorine neon	19.0 20.2	(18) 4.0 He hettum (17) 2	7 0 (8)
Elements with atomic numbers 112-116 have been reported but not fully authenticated	polonium asta	_	E	127.6 12 Te	selenium bror 34 3	Se .	Soulfur chic	32.1 35	O oxygen fluc 8	16.0 19	(16)	9
tomic numbers 112-116 hav but not fully authenticated	bismuth pc 83	0	ý		arsenic se	As	P phosphorus 15	31.0	nitrogen c	14.0	(15)	2
atomic num but not fu	lead 82	207.2	20 th	118.7 Sn	germanium 32	9.7/ Ge	Silicon p	28.1	carbon 6	12.0	(14)	4
nents with	thailium 81	204.4	mulpul 49	114.8 In	gallium 31	Ga 69.7	Al aluminium 13	27.0	B boron 5	10.8	(13)	3
Elen	mercury 80	200.6	cadmium 48	112.4 Cd	zinc 30	65.4 Zn	(12)					
Rg roentgenium	gold 79	197.0	silver 47	107.9 Ag	copper 29	G.53	(11)					
Mt Ds Rg metrerium damstadtum roentgenium	Pt platinum 78	195.1	pailadium 46	106.4 Pd	nicket 28	, E	(01)					
Mt metnerium	Ir iridium 77	192.2	rhodium 45	102.9 Rh	cobalt 27	S. 3	(6)					
Hs hassium	OSmium 76	190.2	5	101.1 Ru		55.8 Fe	(8)				1.0 hydrogen	
Bh bohrium	Re rhenium 75	186.2	molybdenum technettum 42 43	[98] Tc	chromium manganese 24 25	Mn 4.9	(2)					
Sg seaborgium	tungsten 74	183.8	molybdenum 42	95.9 Mo	chromium 24	ი: ა	(9)		bol	mass		
Db dubnium	la tantalum 73	180.9 T	nioblum 41	92.9 Nb	vanadium 23	50°,	(5)		atomic symbol name atomic (proton) number	relative atomic mass	Key	
Rf rutherfordlum	hafnium 72	178.5	zirconium 40	91.2 Zr	titanium 22	4/.9 T	6		ato	relati	68	
AC*	La ^r lanthanum 57	138.9	ţ.	88.9	scandium 21	8c.0	(3)	_		_		
Ra	ba barlum 56	137.3	strontium 38	87.6 Sr	calcium 20	C 40.1	Mg magnestum 12	24.3	Be beryllium 4	0.6	(2)	2
Fr	caesium 55	132.9	rubidium 37	85.5 Rb	potassium 19	7. ×	Na sodium	23.0	Li itthium 3	6.9	(1)	-

series	ries
ide	Se
than	inide
Lan	Act

140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
Ce	P	PN	Pm	Sm	Eu	В	1	ò	유	Ē	Ę	χp	Γn
erium	praecodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thullum	ytterbium	lutetium
28	59	09	61	62	63	64	92	99	29	89	69	70	71
232	[231]	238		[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
드	Pa	_	ď	Pu	Am	£	BK	ჯ	Es	Fm	PW	9 N	ב
orfum	protactinium	uranium	è	plutonium	americium	aurum	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
06	91	92		94	95	96	26	86	66	100	101	102	103