Please check the examination details belo	w before ente	ring your candidate information
Candidate surname		Other names
Centre Number Candidate Nu	mber	
Pearson Edexcel Interi	nation	al Advanced Level
Wednesday 08 May	2024	
Morning (Time: 1 hour 30 minutes)	Paper reference	WCH11/01
Chemistry		H-0
International Advanced Su UNIT 1: Structure, Bondin Organic Chemistry		·
You must have: Scientific calculator, ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

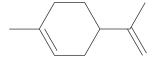
For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 How many **atoms** are there in 10 g of methane?

[A_r values: H = 1.0 C = 12.0 $L = 6.02 \times 10^{23}$ mol⁻¹]

- **A** 3.76×10^{23}
- **B** 9.63×10^{23}
- \square **C** 1.88 × 10²⁴
- \square **D** 4.82 × 10²⁴

(Total for Question 1 = 1 mark)


2 What is the maximum volume of butane that can be completely burned in 39 cm³ of oxygen at room temperature and pressure?

$$C_4H_{10}(g) \ + \ 6.5O_2(g) \ \rightarrow \ 4CO_2(g) \ + \ 5H_2O(l)$$

- \triangle **A** 6.0 cm³
- B 12 cm³
- \square **D** 45 cm³

(Total for Question 2 = 1 mark)

3 This question is about limonene.

(a) What is the molecular formula of limonene?

(1)

- \triangle **A** $C_{10}H_{10}$
- C₁₀H₁₆
- \square **D** $C_{10}H_{22}$
- (b) Limonene is completely hydrogenated by hydrogen in the presence of a nickel catalyst. What is the **empirical formula** of the product formed?

(1)

- lacksquare A C_5H_{11}
- B C₅H₀
- CH₂

(Total for Question 3 = 2 marks)

- 4 What is the best definition of a hydrocarbon?
 - A a compound containing carbon, hydrogen and oxygen
 - B a compound containing carbon and hydrogen only
 - C a compound that contains single carbon to carbon bonds
 - **D** a mixture containing carbon and hydrogen only

(Total for Question 4 = 1 mark)

- 5 This question is about the production of ethanol by fermentation of glucose or by hydration of ethene.
 - (a) What is the percentage atom economy by mass for the production by fermentation?

$$C_6H_{12}O_6 \rightarrow 2CH_3CH_2OH + 2CO_2$$

(1)

- **A** 24.4%
- **■ B** 25.6%
- **■ D** 51.1%
- (b) What is the percentage atom economy by mass for the production by hydration?

$$C_2H_4 + H_2O \rightarrow CH_3CH_2OH$$

(1)

- A 39.1%
- **■ B** 60.9%
- **C** 78.2%
- **D** 100%

(Total for Question 5 = 2 marks)

- **6** This question is about electronic configurations.
 - (a) What is the electronic configuration of an atom of calcium?

(1)

- A [Ne] 3s¹
- \square **B** [Ar] $4s^1$
- \square **C** [Ne] 3s²
- \square **D** [Ar] 4s²
- (b) What is the electronic configuration of a Cr^{3+} ion?

(1)

- \triangle **A** [Ar] $3d^24s^1$
- \blacksquare **B** [Ar] 3d³
- \square **D** [Ar] 3d⁵

(Total for Question 6 = 2 marks)

- **7** This question is about bond angles.
 - (a) What is the expected bond angle in a boron trichloride molecule, BCl₃?

(1)

- **■ B** 107°

- (b) What is the expected bond angle in an ammonium ion?

(1)

- **■ B** 104.5°

- (c) What is the expected bond angle in an oxygen difluoride molecule, OF₂?

(1)

- **■ B** 104.5°
- □ 180°

(Total for Question 7 = 3 marks)

X

X

X

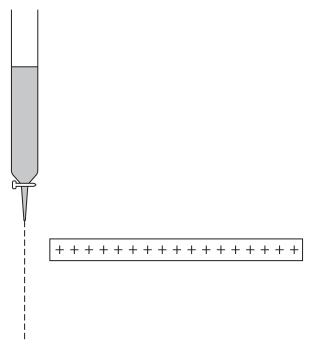
A

В

C

D

8 Which is the strongest **oxidising** agent in these displacement reactions?


$$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$$

$$Br_2 + 2I^- \rightarrow 2Br^- + I_2$$

- A chlorine
- **B** bromide ions
- C bromine
- **D** iodide ions

(Total for Question 8 = 1 mark)

9 To compare polar and non-polar liquids, a stream of liquid from a burette and a positively charged plastic rod can be used. Which row of the table shows the correct direction of deflection?

Direction o	f deflection
Polar liquid	Non-polar liquid
towards the rod	away from the rod
away from the rod	no deflection
towards the rod	no deflection
no deflection	towards the rod

(Total for Question 9 = 1 mark)

- **10** Which equation represents the **second** ionisation energy of magnesium?
 - \square A Mg(g) \rightarrow Mg²⁺(g) + 2e⁻
 - \square **B** $Mg^+(g) \rightarrow Mg^{2+}(g) + e^-$
 - \square **C** Mg⁺(s) \rightarrow Mg²⁺(s) + e⁻
 - \square **D** Mg(g) \rightarrow Mg⁺(g) + e⁻

(Total for Question 10 = 1 mark)

- 11 This question is about the isoelectronic ions N³⁻, O²⁻, F⁻, Na⁺, Mg²⁺ and Al³⁺.
 - (a) Which ions are shown in order of **decreasing** ionic radius?

(1)

- \square A Na⁺ > Mg²⁺ > Al³⁺
- \square **B** Mg²⁺ > Na⁺ > Al³⁺
- \square C Al³⁺ > Na⁺ > Mg²⁺
- (b) Which ions are shown in order of **increasing** ionic radius?

(1)

- lacksquare **A** F^- < O^{2-} < N^{3-}
- lacksquare **B** F⁻ < N³⁻ < O²⁻
- lacksquare C O^{2-} < N^{3-} < F^{-}
- \square **D** N^{3-} < O^{2-} < F^{-}

(Total for Question 11 = 2 marks)

- **12** Which pair of compounds will **not** react to form a precipitate?
 - \triangle A AgNO₃(aq) and CaCl₂(aq)
 - \blacksquare **B** Ca(OH)₂(aq) and CO₂(g)
 - \square **C** Ba(OH)₂(aq) and HCl(aq)
 - \square **D** KI(aq) and Pb(NO₃)₂(aq)

(Total for Question 12 = 1 mark)

- 13 What is observed when iron(II) carbonate reacts with ethanoic acid?
 - A colourless solution
 - **B** colourless solution and effervescence
 - **C** green solution and effervescence
 - **D** green solution

(Total for Question 13 = 1 mark)

- 14 Which is the simplest ionic equation for an alkali reacting with an acid?
 - \square **A** $2H^{+}(aq) + 2OH^{-}(aq) \rightarrow 2H_{2}O(l)$
 - \blacksquare **B** H⁺(aq) + OH⁻(aq) \rightarrow H₂O(aq)
 - \square **C** $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$
 - \square **D** $2H^+(aq) + O^{2-}(aq) \rightarrow H_2O(l)$

(Total for Question 14 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- **15** This question is about silver.
 - (a) Silver chloride decomposes in light. This reaction was used in the first photographic plates.

Write an equation for this decomposition. Include state symbols.

(2)

- (b) Silver can form in displacement reactions.
 - (i) State **two** observations that are made when copper metal is added to silver nitrate solution.

(2)

(ii) Write an equation for this displacement reaction. Include state symbols.

(2)

(c) (i)	Describe the bonding in pure silver metal. Include a 2D diagram to show the arrangement of 12 of the silver particles involved.	(3)
		(3)
(ii)	Pure silver cups are too soft so small amounts of copper are added to make an alloy.	
	Explain why copper makes the silver less malleable.	(2)
	(Total for Question 15 = 11 m	arks)

16 This question is about silicon.

.....

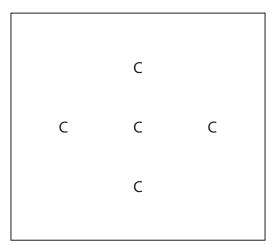
(2)

(ii) Calculate the relative atomic mass of a sample of silicon, using the isotopic abundance data provided.

Give your answer to 3 significant figures.

Isotope	Abundance (%)
²⁸ Si	91.07
²⁹ Si	4.62
³⁰ Si	3.00
³² Si	1.31

(2)



(Total for Question 16	= 10 marks)
(ii) Explain why sulfur does not follow this trend.	(2)
	(3)
Consider the elements Al, Si, P and S. (i) Explain the trend in the first ionisation energies of Al, Si and P.	
	(1)

- 17 Carbon exists as several different structures called allotropes.
 - (a) Complete the dot-and-cross diagram by adding all the electrons in the outer shells of the five carbon atoms in a diamond tetrahedral unit.

(2)

(b) Draw a labelled 3D structure of graphite, showing two layers of at least 13 carbon atoms each and the forces between the layers.

(2)

(c) Suggest why diamond has a greater density than g	graphite. (2)
	(Total for Question 17 = 6 marks)

18 Baking powder is added to cake mixtures to make cakes 'rise' by releasing a gas during cooking.

Baking powder contains an acidic derivative of tartaric acid and about 30% by mass of sodium hydrogencarbonate.

Baking powder releases the gas in two types of reaction during cooking, one of which is neutralisation.

(a) (i) Give the name of the second type of reaction.

(1)

(ii) Suggest why neutralisation does not occur in an unopened container of baking powder.

(1)

(b) (i) The acidic derivative of tartaric acid contains 20.8% potassium, 25.5% carbon, 2.66% hydrogen by mass and the rest is oxygen.

Calculate the empirical formula.

(2)

(ii) The acidic derivative of tartaric acid can be represented by the formula $H^+K^+A^{2-}$.

Write the equation for the neutralisation of sodium hydrogenearbonate by $H^+K^+A^{2-}$.

State symbols are not required.

(2)

(iii) Calculate the maximum volume, in **cm**³, of carbon dioxide gas released by the neutralisation reaction in (b)(ii) from 5.00 g of baking powder, in an oven at 190°C at 101 000 Pa.

Baking powder contains 30% sodium hydrogencarbonate by mass. [pV = nRT]

(5)

(iv) Calculate the decrease in volume when the carbon dioxide gas is cooled to 20°C .

(2)

(Total for Question 18 = 13 marks)

BLANK PAGE

19 Both butter and margarine are fats used in cooking.

(a) Margarines are sold as unsaturated fats.

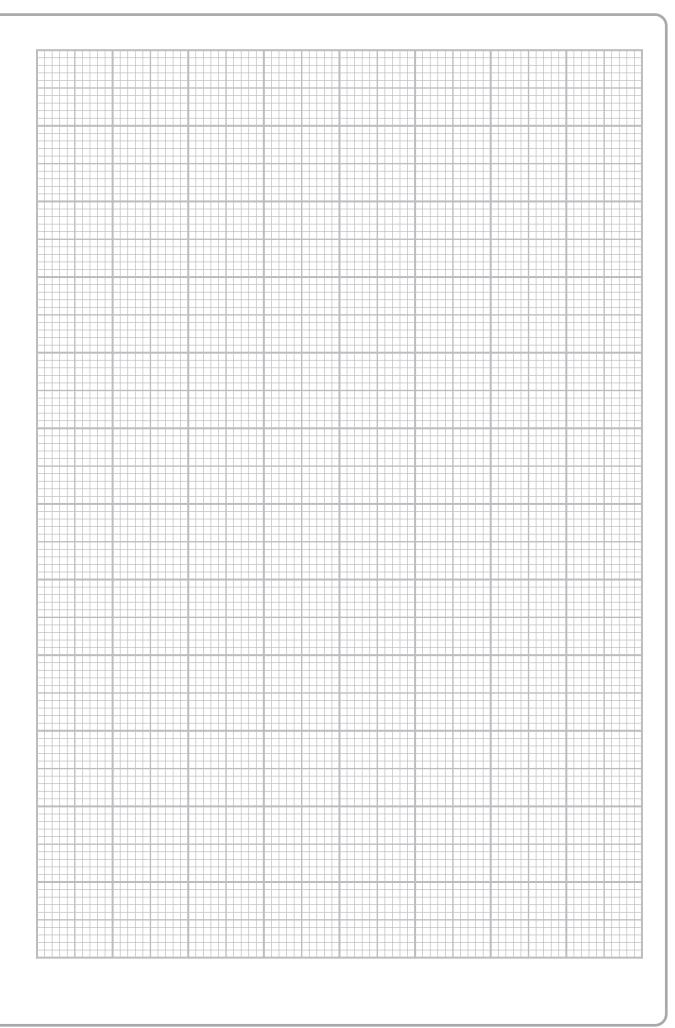
State the meaning of the term unsaturated.

(1)

(b) (i) The degree of unsaturation can be determined by the reaction with bromine water.

Name the type of reaction.

(1)


Data using 0.5 g of some unsaturated fat in this bromination is given in the table.

Average number of C—C bonds per molecule	Volume of 0.0625 mol dm ⁻³ bromine water / cm ³
1	28.3
2	57.3
3	86.9
4	115

(ii) Plot a graph of the data. Include a line of best fit.

(3)

(iii) Data for the bromination of 0.5 g samples of a margarine are shown.

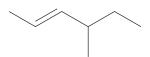
Trial	Volume of 0.0625 mol dm ⁻³ bromine water / cm ³
1	36.9
2	34.1
3	39.3
4	32.5

Calculate the mean volume of bromine water using all results in the table.

(1)

(iv) Determine the average number of C—C bonds per molecule of the unknown sample to 2 significant figures, using your graph.

(1)



(c) (i) Using the simplest alkene as an example, draw the mechanism to show the reaction with liquid bromine.

(4)

(ii) Name this compound by applying IUPAC rules.

(1)

(d) Explain the meaning of "trans" in "trans" fats, using a skeletal formula showing four carbon atoms in your answer.	
	(2)
(Total for Question 19 = 14 m	narks)

20 Many synthetic polymers are used in the home. Some are used as containers and others as coatings.

PVC and PTFE are two such examples.

(a) Draw the **displayed** formula of each of the monomers for these polymers.

(2)

chloroethene

tetrafluoroethene

(b) Incineration and recycling are two methods of disposing of polymer waste. Give one advantage and one disadvantage for each method.	
Incineration	(4)
advantage	
disadvantage	
Recycling	
advantage	
disadvantage	
(Total for Question 20 = 6	marks)

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

lawrencium

nobelium

mendelevium

fermium [253] **Fm**

[251] [254]

Cf Es

californium einsteinium

[245] **BK**berkelium
97

[247] £

[243]

[242]

[237]

238

[231] Pa

232 무 103

102

101

9

66

86

aurium 96

Np Pu Am neptunium plutonium americium 93 94 95

uranium

protactinium

thorium

* Actinide series

92

9

8

[257] ۲

[254] ٧

[256] ÞΨ

	(8)	4.0 He ling	<u> </u>	.2	Ne	5 O	39.9	_	ام م م	∞.	<u>.</u>	krypton 36	131.3	<u>а</u>	xenon 54	[222]	R	radon 86]					
	0 (8)	4.0 He	2	20.2	Z	neon 10	39	Ar	argon	83.8	ᄌ	krypto 36	131	Xe	xenoi 54	[22	<u>~</u>	გ ∞		orted				_
	7		(17)	19.0	ш	fluorine 9	35.5	ರ	chlorine 17	79.9	Br	bromine 35	126.9	Ι	iodine 53	[210]	Αt	astatine 85		been repo		175		lutetium 71
	ø		(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	<u>1</u>	tellurium 52	[506]	8	polonium 84		116 have	ıticated	173	Ϋ́	ytterbium 70
	D.		(15)	14.0	z	nitrogen 7	31.0	۵	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		nbers 112-	but not fully authenticated	169		
	4		(14)	12.0	U	carbon 6	28.1		silicon 14	72.6	g	germanium 32	118.7	Sn	20 ti	207.2	Pb	lead 82		atomic nur	but not fi	167	Ę	erbium 68
	m		(13)	10.8	Ω	boron 5	27.0	¥	aluminium 13	69.7		gallium g	114.8	'n	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported		165		holmium 67
ents							<u> </u>		(12)	65.4	Zu	zinc 30	112.4	<u>გ</u>	cadmium 48	200.6	Ę	mercury 80		Elem		163	Dy	lysprosium 66
Elem									(11)	63.5	J	copper 29	107.9	Ag	silver 47	197.0			[272]	Rg	centgenium 111	159	Tp	terbium c
The Periodic Table of Elements									(10)	58.7	Ë	nickel 28	106.4	Pq	palladium 46	195.1	చ	platinum 78	[271]	Ds	darmstadtium n 110	157		gadolinium 64
: Tabl									(6)	58.9	ප	cobalt 27	102.9	格	rhodium 45	192.2	<u>_</u>	iridium 77	[368]	۸t	meitnerium 1	152		europium 63
riodic		1.0 H hydrogen	-						(8)	55.8	Pe	iron 26	101.1	Ru	n ruthenium 44	190.2	Os	osmium 76	[277]		hassium 108	150		m samarium 62
ne Pe	!								(2)	54.9	W	manganese 25	[98]	ည	technetium 43	186.2	Re	rhenium 75	[264]		bohrium 107	[147]	Pm	promethium 61
È				mass		umber			(9)	52.0	ъ	chromium manganese	95.9	Wo	molybdenum technetiur 42 43	183.8	>	tungsten 74	[596]	Sg	seaborgium 106	144	PX	praseodymium neodymium promethium 59 60 61
			Key	relative atomic mass	atomic symbol	name atomic (proton) number			(5)	50.9	>	vanadium 23	92.9		niobium 41	180.9	Та	tantalum 73	[292]		dubnium 105	141	Pr	oraseodymium 59
				relati	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	¥	rutherfordium 104	140	Ce	cerium p
									(3)	45.0	Sc	scandium 21	88.9	>	yttrium 39	138.9	۲a*	lanthanum 57	[227]		actinium 89		V	:
	2		(2)	0.6	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3		barium 56	[526]	Ra	radium 88		* Lanthanide series)))
	-		(1)	6.9	ב	lithium 3	23.0	Na	sodium 11	39.1	¥	potassium 19	85.5	&	rubidium 37	132.9	ర	caesium 55	[223]	ቷ	francium 87		* Lanth	

28