Please check the examination details below before enter	ering your candidate information
Candidate surname	Other names
Centre Number Candidate Number Pearson Edexcel Internation	al Advanced Level
Pearson Edexcel Internation	ai Advanced Levei
Tuesday 10 October 2023	
Morning (Time: 1 hour 30 minutes) Paper reference	WCH11/01
Chemistry	• •
International Advanced Subsidiary UNIT 1: Structure, Bonding and In Organic Chemistry	·
You must have: Scientific calculator, ruler	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 An atom of $^{27}_{13}$ Al forms the ion, Al $^{3+}$. What are the numbers of protons, electrons and neutrons in this ion?

	protons	electrons	neutrons
A	13	13	14
В	10	13	14
C	14	10	13
D	13	10	14

(Total for Question 1 = 1 mark)

2 What is the shape of a p orbital and the maximum number of electrons it can hold?

		shape	maximum number of electrons
\boxtimes	A		2
X	В		6
X	c		2
X	D		6

(Total for Question 2 = 1 mark)

X

- **3** The formula of calcium carbide is CaC_2 .
 - (a) What is the formula of the carbide ion?

(1)

- \triangle A C_2^-
- \blacksquare **B** C_2^+
- $C C_2^{2-}$
- \square **D** C_2^{2+}
- (b) Excess calcium carbide and $10 \, g$ of water react to form the hydrocarbon ethyne, C_2H_2 .

$$CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$$

What is the mass of ethyne that forms, assuming a yield of 100%?

[
$$M_r$$
 values: $H_2O = 18.0$ $C_2H_2 = 26.0$]

(1)

- B 14.4 g
- ☑ D 28.9 g

(Total for Question 3 = 2 marks)

4 Which diagram best represents the electron density map of sodium chloride?

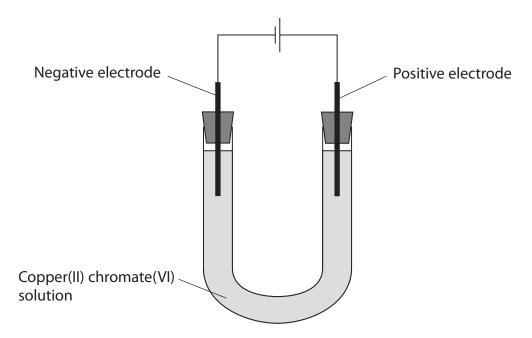
- □ D

(Total for Question 4 = 1 mark)

5 What types of bonding are present in the compound ammonium chloride, NH₄Cl?

		lonic	Covalent	Dative covalent
X	Α	✓	×	✓
X	В	×	✓	×
X	C	✓	✓	×
×	D	✓	✓	✓

(Total for Question 5 = 1 mark)

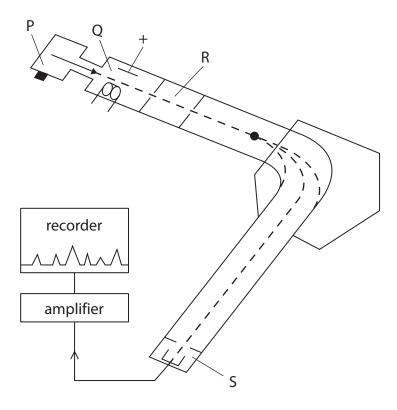

6 The electronic configurations of the atoms of four elements are shown.

What is the electronic configuration of the atom of element which has the **lowest** first ionisation energy?

- \triangle **A** 1s²2s²2p⁶3s²
- \blacksquare 1s²2s²2p⁶3s²3p¹
- \square **C** $1s^22s^22p^63s^23p^2$
- \square **D** 1s²2s²2p⁶3s²3p³

(Total for Question 6 = 1 mark)

7 A direct electrical current was passed through a green solution of copper(II) chromate(VI) in the apparatus shown.



Which colours would be seen at each electrode after several minutes?

		Negative electrode	Positive electrode
X	Α	blue	green
X	В	green	blue
X	C	blue	yellow
X	D	yellow	blue

(Total for Question 7 = 1 mark)

8 In which region of a mass spectrometer are particles ionised?

- A region P
- ☑ B region Q
- C region R
- D region S

(Total for Question 8 = 1 mark)

9 A sample of the element chlorine, Cl₂, was analysed in a mass spectrometer. Chlorine has **two** isotopes.

What is the **total** number of peaks, due to ions with a single positive charge, which could be seen in the mass spectrum?

- A two
- **B** four
- **C** five
- **D** six

(Total for Question 9 = 1 mark)

(1)

- **10** Propene, CH₃CH=CH₂, reacts with hydrogen chloride, HCl, to form halogenoalkanes.
 - (a) Which of these steps is most likely to occur in the reaction?

- (b) The reaction of propene with hydrogen chloride is an example of
 - (1)
- A free radical substitution
- **B** free radical addition
- **D** electrophilic addition

(Total for Question 10 = 2 marks)

- **11** Ethene reacts with acidified potassium manganate(VII). A student makes four statements about the reaction.
 - the organic product can show geometric isomerism
 - the type of reaction that takes place is oxidation
 - the bond angles around each carbon atom are greater in the product than in ethene
 - the acidified potassium manganate(VII) decolourises in the reaction

How many of these statements are correct?

- A one
- **B** two
- C three
- **D** four

(Total for Question 11 = 1 mark)

- 12 Concentrations in mixtures can be given in units of parts per million (ppm).
 - (a) A sample of a gaseous mixture contains 2.19% carbon dioxide by mass.

What is the concentration of carbon dioxide in parts per million (ppm) by mass in this sample?

(1)

- **A** 2.19×10^6
- **B** 2.19×10^4
- **C** 2.19×10^{-4}
- \square **D** 2.19 × 10⁻⁶
- (b) A solution of lead nitrate has a concentration of 15 ppm by mass.

What is the mass of lead nitrate in 400 g of this solution?

(1)

- **A** 6.00×10^{-3} g
- **B** 6.00×10^{-6} g
- **C** $6.00 \times 10^{-3} \text{ kg}$
- **D** $6.00 \times 10^{0} \text{ kg}$

(Total for Question 12 = 2 marks)

13 Which solution contains chloride ions with a concentration of 0.0500 mol dm⁻³?

[A_r values:

$$Ca = 40.1$$

$$Cl = 35.5$$

$$Na = 23.0$$

		Solute	Mass of solute / g	Volume of solution / cm ³
X	A	calcium chloride	1.39	250
×	В	calcium chloride	1.39	500
×	C	sodium chloride	1.46	250
X	D	sodium chloride	1.46	1000

(Total for Question 13 = 1 mark)

14 The formula of phosgene is COCl₂.

What is the total number of atoms in 9.9 g of phosgene?

[Avogadro constant (L) = $6.02 \times 10^{23} \,\text{mol}^{-1}$ $M_r \,\text{value: COCl}_2 = 99.0$]

- **A** 1.51×10^{22} X
- **B** 6.02×10^{22} X
- C 1.81×10^{23} X
- **D** 2.41×10^{23} X

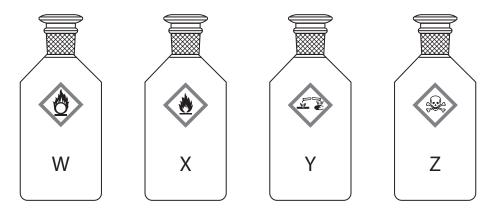
(Total for Question 14 = 1 mark)

15 What is the number of structural isomers with the molecular formula C₅H₁₂?

- **A** six
- X **B** five
- X **C** four
- X **D** three

(Total for Question 15 = 1 mark)

16 A cyclic hydrocarbon has the structure shown.



How many pi (π) and sigma (σ) bonds are present in the molecule?

		pi (π) bonds	sigma (σ) bonds
×	A	2	11
X	В	2	5
X	C	4	3
X	D	4	10

(Total for Question 16 = 1 mark)

17 A technician is asked to store four reagent bottles safely. The only information about each substance is the hazard label on the bottle.

Based on the hazard labels alone, which two bottles should **never** be stored together?

- \triangle A W and Z
- **B** Y and Z
- C W and X
- D Y and X

(Total for Question 17 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- **18** This question is about the elements in Period 2 of the Periodic Table.
 - (a) The first ionisation energies of some elements in Period 2 are shown.

Element	Li	Be	В	С	N	0	F	Ne
First ionisation energy / kJ mol ⁻¹	520	900	801	1086	1402		1681	2081

(i)	Explain the general trend in first ionisation energy across Period 2.	(2)
(ii)	Predict a value for the first ionisation energy of oxygen. Justify your answer.	(3)
(ii)		(3)
(ii)		(3)

(b) Tl	ne second ionisation energy of lithium, Li, is 7298 kJ mol ⁻¹ .	
(i) Write the equation for the second ionisation energy of lithium. Include state symbols.	(2)
(ii	Explain the large difference between the first and second ionisation energies of lithium.	(2)

(C)	Beryllium reacts with chlorine to form beryllium chloride.	
	In the gas phase, beryllium chloride exists both as a simple molecule, BeCl ₂ at	nd

In the gas phase, beryllium chloride exists both as a simple molecule, $BeCl_2$, and as a dimer, Be_2Cl_4 .

(i) Draw a dot-and-cross diagram of the molecule, BeCl₂.

(1)

(ii) Explain the shape and bond angle in the molecule BeCl₂.

(4)

	Shape
	Bond angle
	Explanation
I	

(iii) Draw a diagram to show how two beryllium chloride molecules bond together to form the dimer, Be₂Cl₄, stating the type of bond involved.

(2)

Type of bond

(Total for Question 18 = 16 marks)

- **19** Many cars use fuels containing ethanol as well as hydrocarbons. The E numbers of these fuels show the percentage by volume of ethanol in the fuel. For example, an E5 fuel contains 5% ethanol and 95% hydrocarbons by volume.
 - (a) A brand of E10 fuel contains 92.2% hydrocarbons and 7.80% ethanol by mass.

The energy density is the amount of energy released per kg of a fuel burned. The energy densities of the two components of this brand of fuel are shown.

energy density of hydrocarbons = 46.5 MJ kg^{-1}

energy density of ethanol = 29.7 MJ kg^{-1}

(i) Calculate the **mean** energy density of this E10 fuel in MJ kg⁻¹. Give your answer to an appropriate number of significant figures.

(2)

(ii) The density of the E10 fuel is $0.729 \,\mathrm{g}\,\mathrm{cm}^{-3}$.

Calculate the mass of 1500 cm³ of the fuel.

(1)

(iii) Calculate the energy released when 1500 cm³ of the E10 fuel is burned in excess oxygen, using your answers from (a)(i) and (a)(ii).

[If you did not calculate a value for the **mean** energy density of the E10 fuel in (a)(i), use a value of $38.1 \,\mathrm{MJ\,kg^{-1}}$. This is not the correct value.]

(1)

Explai	n how this change might result in a more sustainable fuel.	(3)
It was	raight-chain alkane hexane can be reformed to give a range of products. suggested that one such reaction may produce a cyclic hydrocarbon and gen gas as the only products.	
It was hydrog The cy (i) Wi	suggested that one such reaction may produce a cyclic hydrocarbon and gen gas as the only products.	(1)
lt was hydrog The cy (i) Wi	suggested that one such reaction may produce a cyclic hydrocarbon and gen gas as the only products. I clic hydrocarbon contains a ring of five carbon atoms. The equation for this reaction using molecular formulae.	(1)
It was hydrog The cy (i) Wi	suggested that one such reaction may produce a cyclic hydrocarbon and gen gas as the only products. I clic hydrocarbon contains a ring of five carbon atoms. The equation for this reaction using molecular formulae.	(1)
It was hydrog The cy (i) Wi Sta	suggested that one such reaction may produce a cyclic hydrocarbon and gen gas as the only products. It is called the carbon atoms. It is the equation for this reaction using molecular formulae. It is symbols are not required.	(1)
It was hydrog The cy (i) Wi Sta	suggested that one such reaction may produce a cyclic hydrocarbon and gen gas as the only products. I clic hydrocarbon contains a ring of five carbon atoms. The equation for this reaction using molecular formulae.	(1)
It was hydrog The cy (i) Wi Sta	suggested that one such reaction may produce a cyclic hydrocarbon and gen gas as the only products. It is called the carbon atoms. It is the equation for this reaction using molecular formulae. It is symbols are not required.	

(d)	Hexane will react with chlorine in the presence of ultraviolet light to form a
	number of products.

(i) Describe the role of the ultraviolet light in the initiation step of this reaction.

(2)

(ii) The alkane dodecane, $C_{12}H_{26}$, is formed in this reaction. Write equations for the propagation step and for the termination step for the formation of this product. Use molecular formulae in your equations.

(2)

Propagation step

Termination step

(Total for Question 19 = 13 marks)

- 20 This question is about alkenes.
 - (a) A straight-chain alkene, **X**, has the structure shown.

(i) Draw the skeletal formulae of the four structural isomers of **X** that are alkenes. **Do not** include geometric isomers.

(4)

I .

(ii) Explain why X can exist as geometric isomers.	(2)
(b) Another compound, Y , has the structure shown.	
Cl	
(i) Give the IUPAC name for Y .	(1)
(ii) A student stated that	
'Compound Y has polar bonds so it is a polar molecule'.	
Comment on this statement.	(3)

(c) Bisabolenes are a group of compounds found in plants and fungi. Bisabolene molecules contain several carbon–carbon double bonds.

5.51 g of α -bisabolene reacted with 1873 cm³ of hydrogen gas, H₂. The reaction occurred at a temperature of 150 °C and a pressure of 152 000 Pa.

- [M_r value: α -bisabolene = 204.0]
- (i) Calculate the amount, in mol, of α -bisabolene in 5.51 g.

(1)

(ii) Calculate the amount, in mol, of hydrogen gas that reacted with α -bisabolene. Use the ideal gas equation, pV = nRT.

$$[R = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}]$$

(3)

(iii) Deduce the number of carbon-carbon double bonds in a molecule of α -bisabolene, using your answers to (c)(i) and (c)(ii).

(1)

(d) The repeat unit of the polymer polyisoprene is shown.

polyisoprene

(i) Draw the **skeletal** formula of the monomer of polyisoprene.

(1)

(ii) A sample of polyisoprene has a relative molecular mass of 50 250. Calculate the number of repeat units in the sample.

(2)

(e)	Incinerators used to dispose of polymer waste have a system to remove waste gases. Suggest why these systems contain solid calcium hydroxide and why it is finely powdered.						
	mely powdered.	(2)					
	(Total for Question 20 = 20 m	arks)					

- **21** This question is about minerals containing metallic elements.
 - (a) The green mineral zaratite contains basic nickel(II) carbonate, Ni₃CO₃(OH)₄ 4H₂O.

Basic nickel(II) carbonate can be formed by the reaction of nickel(II) sulfate with sodium carbonate under alkaline conditions, as shown.

$$3NiSO_4(aq) + Na_2CO_3(aq) + 4NaOH(aq) + 4H_2O(l) \rightarrow Ni_3CO_3(OH)_4 \cdot 4H_2O(s) + 3Na_2SO_4(aq)$$

$$[A_r \text{ values: H} = 1.0 \quad C = 12.0 \quad O = 16.0 \quad Na = 23.0 \quad S = 32.1 \quad Ni = 58.7]$$

(i) Calculate the relative formula mass of basic nickel(II) carbonate, $Ni_3CO_3(OH)_4 \cdot 4H_2O$.

(1)

(ii) Calculate the atom economy by mass for the formation of basic nickel(II) carbonate by the reaction shown.

(2)

(iii) Give the reason why use of the term 'relative molecular mass' is not appropriate in (a)(i).

(1)

- (b) Chemists often simplify full chemical equations into ionic equations by removing spectator ions.
 - (i) Give the electronic configuration of the nickel ion present in nickel(II) compounds.

(1)

(ii) Write the **ionic** equation for the formation of basic nickel(II) carbonate from nickel(II) sulfate.State symbols are not required.

 $3NiSO_4(aq) + Na_2CO_3(aq) + 4NaOH(aq) + 4H_2O(l) \rightarrow Ni_3CO_3(OH)_4 \cdot 4H_2O(s) + 3Na_2SO_4(aq)$ (1)

(c) Another basic carbonate found in minerals contains the metal element **X** and is formed by the reaction shown.

$$2\textbf{X}SO_4 + 2Na_2CO_3 + H_2O \rightarrow \textbf{X}_2CO_3(OH)_2 + 2Na_2SO_4 + CO_2$$

 $1.995 \,\mathrm{g}$ of **X**SO₄ is reacted with excess Na₂CO₃ forming $150.0 \,\mathrm{cm}^3$ of carbon dioxide gas, CO₂, at room temperature and pressure, r.t.p.

[Molar volume of a gas at r.t.p. = $24.0 \,\mathrm{dm^3 \,mol^{-1}}$]

(i) Calculate the relative formula mass of **X**SO₄, using these data.

(4)

(ii) Deduce the identity of **X**, using your answer to (c)(i).

(1)

(Total for Question 21 = 11 marks)

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

lawrencium

nobelium

mendelevium

[253] **Fm** fermium

Cf Es Californium einsteinium

[245] **BK**berkelium
97

Ca curium 96

Np Pu Am neptunium plutonium americium 93 94 95

uranium

protactinium

232 **Th** thorium

* Actinide series

92

9

8

[247]

[243]

[242]

[237]

238

[231] **Pa** 103

102

101

9

66

86

[257] **Lr**

[254] **No**

[256] **Md**

				_			,			_							_			_								
	0 (8)	4.0 He lium	2	20.2	Ne	10	39.9	Αľ	argon 18	83.8	Ā	krypton 2 6	ה ק	131.3	Xe	xenon 54	[222]	<u>~</u>	radon	86		pa:						
	7		(17)	19.0	F fluorine	6	35.5	ַ כּ	chlorine 17	79.9	Ŗ	bromine 25	C .	126.9	Н	iodine 53	[210]	At	astatine	85		een report			175	בי	lutetium 71	
	9		(16)	16.0	0	8	32.1	S	sultur 16	79.0	Se	selenium 2.4	<u></u>	127.6	<u>6</u>	tellurium 52	[209]	ြီ	polonium	84		116 have b	ticated		173	Ą	ytterbium 70	
	ιC		(15)	14.0	Z	7	31.0	۵.	phosphorus 15	74.9	As	arsenic 23	c	121.8	Sp	antimony 51	209.0	œ.	bismuth	83		Elements with atomic numbers 112-116 have been reported	but not rully authenticated		169		thulium 69	
	4		(14)	12.0	ن يولو	6	28.1		silicon 14	72.6	g	germanium	76	118.7	S	ž ţi	207.2	Pb	lead	82		atomic nur	DUT NOT 11		167	Ъ	erbium 68	
	m		(13)	10.8	B	5	27.0	₹	aluminium 13	69.7	g	gallium 21	5	114.8	٦	indium 49	204.4	F	thallium	81		ents with			165	운	holmium 67	
ents									(12)	65.4	Zu	zinc	3	112.4	ੲ	cadmium 48	200.6	Ħ	mercury	08					163		Ē	
Elem									(11)	63.5	ت	copper	67	107.9	Ag	silver 47	197.0	Αn	plog	79	[272]	Rg	oentgenium 111		159		terbium 65	
The Periodic Table of Elements									(10)	58.7	'n	nickel	07	106.4	Б	palladium 46	195.1	T	platinum	28/	_	Os	meitnenum damstadtium 109 110		157	В	gadolinium 64	
c Tab										(6)	58.9	ပိ	cobalt	/7	102.9	돈	rhodium 45	192.2	<u>_</u>	iridium	//	[368]	Mt	meitnenum 109		152	Eu	europium gadolinium 63 64
riodi		1.0 H hydrogen	-						(8)	55.8	Fe	iron	07	101.1	Ru	ruthenium 44	190.2	Os	osmium	9/	[277]	£	hassium 108		150	Sm	samarium 62	
ne Pe									(2)	54.9	٧	manganese	C7	[98]	ပ	molybdenum technetium ruthenium	186.2	Re	rhenium	7.5			bohrium 107		[147]	Pm	promethium 61	
F				mass	log	umber			(9)	52.0	ъ	Ē	47	95.9	Wo	molybdenum	183.8	>	tungsten	74	[596]	Sg	seaborgium 106		144	PZ	praseodymium neodymium promethium samarium 59 60 61 62	
			Key	relative atomic mass	atomic symbol	atomic (proton) number			(2)	50.9	>	vanadium	67	92.9	q	niobium 41	180.9	Ta	tantalum	73			dubnium 105		141	Pr	praseodymium 59	
				relati	ato	atomic			4	47.9	ï	titanium	77	91.2	Zr	zirconium 40	178.5	Ħ	hafnium	72	[261]	R	rutherfordium 104		140		cerium 58	
									(3)	45.0	Sc	scandium	17	88.9	>	yttrium 39	138.9	La*	lanthanum	27	[227]	Ac*	actinium 89	<u> </u>		Se	?	
	2		(2)	9.0	Be	4	24.3	Mg	magnesium 12	40.1	Ca	calcium	07	87.6	Sr	strontium 38	137.3	Ba	barium	26	[526]	Ra	88			* Lanthanide series	,	
	-		(1)	6.9	Lifthium	<u>ج</u>	23.0	Na	sodium 11	39.1	¥	potassium		85.5	&	rubidium 37	132.9	ర	caesium	၃၃	[223]	<u>ት</u>	rrancium 87			* Lanth	: ; !	

P 7 5 0 7 0 A 0 2 8 2 8