| Diagonale alcebra avancination details bala                                           | b afava ante |             | nfown ation |
|---------------------------------------------------------------------------------------|--------------|-------------|-------------|
| Please check the examination details below before entering your candidate information |              |             |             |
| Candidate surname                                                                     |              | Other names | )           |
|                                                                                       |              |             | J           |
| Centre Number Candidate Nu                                                            | ımber        |             |             |
| Control variables                                                                     |              |             |             |
|                                                                                       |              |             |             |
|                                                                                       |              |             |             |
| Pearson Edexcel Interi                                                                | nation       | al Advand   | ed Level    |
| Friday 26 May 2023                                                                    |              |             |             |
|                                                                                       | Paper        |             |             |
| Morning (Time: 1 hour 20 minutes)                                                     | reference    | <b>WCH</b>  | 13/01       |
| Chemistry                                                                             |              |             | ₾ •         |
|                                                                                       |              |             |             |
| International Advanced Su                                                             | ıbsidiar     | y/Advanced  | Level       |
| UNIT 3: Practical Skills in (                                                         |              |             |             |
| OINIT 5. Plactical 5kills ill                                                         | CHEIIIIS     | луі         |             |
|                                                                                       |              |             |             |
|                                                                                       |              |             |             |
| You must have:                                                                        |              |             | Total Marks |
| Scientific calculator                                                                 |              |             |             |
| Scientific calculator                                                                 |              |             |             |
|                                                                                       |              |             |             |

### Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
  - there may be more space than you need.

# Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

# **Advice**

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶







# Answer ALL the questions. Write your answers in the spaces provided.

- 1 This question is about two ionic compounds, **A** and **B**.
  - (a) Compound **A** is a white crystalline solid that contains one cation and one anion.
    - (i) A flame test was carried out on solid **A** and a pale green colour was observed. Identify, by name or formula, the cation present in **A**.

(1)

(ii) Aqueous silver nitrate, acidified with dilute nitric acid, was added to a sample of solid **A** dissolved in distilled water.

A yellow precipitate formed.

Identify, by name or formula, the anion present in A.

(1)

(iii) Give the formula of A.

(1)

(iv) The **anion** present in **A** can be shown by a **different** test on solid **A**.

Give a suitable different test with the expected result to show the identity of this **anion**.

(2)

| Test | Expected result |
|------|-----------------|
|      |                 |
|      |                 |
|      |                 |
|      |                 |
|      |                 |

- (b) Solid **B** is ammonium sulfate.
  - (i) Give a test, with the expected result, to confirm the presence of the ammonium ion in **B**.

(2)

| Test | Expected result |
|------|-----------------|
|      |                 |
|      |                 |
|      |                 |
|      |                 |

(ii) Give a test, with the expected result, to confirm the presence of the sulfate ion in **B**.

(3)

| Test | Expected result |
|------|-----------------|
|      |                 |
|      |                 |
|      |                 |
|      |                 |

(iii) Write the **ionic** equation for the reaction taking place in (b)(ii). Include state symbols.

(1)

(Total for Question 1 = 11 marks)

- 2 Tests are carried out to identify two liquid organic compounds, **C** and **D**.
  - (a) A small amount of phosphorus(V) chloride, PCl<sub>5</sub>, is added to separate 2 cm<sup>3</sup> samples of each compound.

| Observations              |                           |  |
|---------------------------|---------------------------|--|
| С                         | D                         |  |
| Misty fumes are given off | Misty fumes are given off |  |

Identify, by name or formula, the misty fumes.

(1)

(b) 2 cm³ of aqueous sodium hydrogencarbonate, NaHCO₃(aq), is added to separate 2 cm³ samples of each compound.

Any gas given off is tested with limewater.

| Observations                |            |  |
|-----------------------------|------------|--|
| С                           | D          |  |
| Bubbles of a colourless gas | No change  |  |
| Limewater turns cloudy      | Two change |  |

Identify, by name or formula, the gas produced by compound C.

(1)





(c) 2 cm³ of Benedict's or Fehling's solution is added to separate 2 cm³ samples of each compound. The test tubes are placed in a warm water bath.

| Observations |                 |  |
|--------------|-----------------|--|
| С            | D               |  |
| No change    | Positive result |  |

Give the expected observation for the positive result produced by liquid **D**. Include the initial and final appearance of the contents of the test tube.

(2)

- (d) Both  ${\bf C}$  and  ${\bf D}$  have the molecular formula  $C_3H_6O_2$ .
  - (i) Deduce the structure of **C** and the **two** possible structures of **D**. Use the molecular formula and the results from (a), (b) and (c).

(3)

| Structure of <b>C</b> |
|-----------------------|
|                       |
|                       |
|                       |
|                       |

| Possible structure of <b>D</b> | Possible structure of <b>D</b> |
|--------------------------------|--------------------------------|
|                                |                                |
|                                |                                |
|                                |                                |
|                                |                                |

(ii) Some infrared data are given in the table.

| Group                                        | Wavenumber range / cm <sup>-1</sup> |  |
|----------------------------------------------|-------------------------------------|--|
| O—H stretching in alcohols                   | 3750–3200                           |  |
| O—H stretching in carboxylic acids 3300–2500 |                                     |  |
| C—O stretching in aldehydes                  | 1740–1720                           |  |
| C—O stretching in ketones                    | 1720–1700                           |  |
| C=O stretching in carboxylic acids           | 1725–1700                           |  |
| C—H stretching in aldehydes                  | 2900–2820, 2775–2700                |  |
| C—H stretching in alkanes                    | 2962–2853                           |  |

State the wavenumber range for one peak that would be present in the infrared spectra of **both C** and **D**, identifying the bond responsible for this peak.

(1)

(iii) A student suggested that the structure of **D** could be identified using mass spectrometry because only one of the possible structures of **D** would have a peak at m/z = 15.

Identify which of the possible structures of  ${\bf D}$  would be expected to give this peak. Justify your answer.

(2)

(Total for Question 2 = 10 marks)

**BLANK PAGE** 



- **3** This question is about some reactions of butan-1-ol.
  - (a) A group of students was required to oxidise butan-1-ol to butanoic acid. The students suggested three different types of apparatus for this reaction.



Their teacher told them they should use apparatus F.

(i) Explain why apparatus **E** is **not** suitable for the oxidation of butan-1-ol to butanoic acid.

(2)

(ii) Give a **different** reason why apparatus **G** is also **not** suitable for the oxidation of butan-1-ol to butanoic acid.

(1)

| (    | iii) | Explain why, in apparatus <b>F</b> , the water should flow in from the bottom of the condenser. |       |
|------|------|-------------------------------------------------------------------------------------------------|-------|
|      |      |                                                                                                 | (2)   |
|      |      |                                                                                                 |       |
|      |      |                                                                                                 |       |
|      |      |                                                                                                 |       |
| (    | iv)  | State the reaction <b>mixture</b> that can be used to oxidise the                               |       |
|      |      | butan-1-ol to butanoic acid.                                                                    | (1)   |
|      |      |                                                                                                 |       |
|      |      |                                                                                                 |       |
|      |      |                                                                                                 |       |
|      | (V)  | Give the colour change observed in the flask during this oxidation.                             | (1)   |
| From |      | to                                                                                              |       |
| (b)  | But  | tan-1-ol can also form the alkene but-1-ene in an elimination reaction.                         |       |
|      | (i)  | Name a suitable chemical reagent to carry out this elimination reaction.                        |       |
|      |      |                                                                                                 | (1)   |
|      |      |                                                                                                 |       |
|      |      |                                                                                                 |       |
|      | (ii) | Give a chemical test, including the expected result, to confirm the presence of                 |       |
|      |      | the C=C double bond in but-1-ene.                                                               | (2)   |
|      |      |                                                                                                 |       |
|      |      |                                                                                                 |       |
|      |      |                                                                                                 |       |
|      |      | (Total for Question 3 = 10 ma                                                                   | rks)  |
|      |      | (10tal for Question 3 = 10 ma                                                                   | i N3) |



4 This question is about calcium and calcium hydroxide, Ca(OH)<sub>2</sub>.

A student reacted calcium with water to determine a value for the molar volume of hydrogen at room temperature and pressure.

## **Procedure**

- Step 1 200 cm<sup>3</sup> of distilled water (an excess) was transferred to a conical flask.
- Step **2** A small piece of calcium metal was placed in a pre-weighed weighing boat. The boat was then reweighed.
- Step **3** The calcium was dropped into the conical flask and a bung connected to a gas syringe was inserted.
- Step 4 The volume of hydrogen collected was recorded.



### Results

| Mass of weighing boat / g                      | 1.657 |
|------------------------------------------------|-------|
| Mass of weighing boat and calcium / g          | 1.783 |
| Volume of hydrogen collected / cm <sup>3</sup> | 72.0  |

The equation for the reaction in the conical flask is shown.

$$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$$

(a) (i) State **two** observations when this reaction takes place.

| <br> | <br> |
|------|------|

(2)

10



| (ii) | Calculate the value for the molar volume of hydrogen under these conditions |
|------|-----------------------------------------------------------------------------|
|      | using the student's results.                                                |

Give your answer to an appropriate number of significant figures and include units.

(4)

- (b) A second student using this method obtained a value of 21.8 dm³ mol⁻¹ for the molar volume of hydrogen.
  - (i) Calculate the percentage error in this student's value.

    The data book value for the molar volume of hydrogen under these conditions is 23.9 dm<sup>3</sup> mol<sup>-1</sup>.

(1)

(ii) Give **two** possible reasons why this student obtained a value below the data book value.

Assume the method was followed correctly and there were no measurement errors.

(2)



(c) A third student carried out an experiment to determine the concentration of a saturated solution of calcium hydroxide, Ca(OH)<sub>2</sub>, in water at room temperature.

25.0 cm<sup>3</sup> of a saturated solution of calcium hydroxide was pipetted into a conical flask. Three drops of methyl orange indicator were added and the solution was titrated with 0.0400 mol dm<sup>-3</sup> hydrochloric acid.

The procedure was repeated until concordant titres were obtained.

The results are shown in the table.

| Titration                                 | 1     | 2     | 3     | 4     |
|-------------------------------------------|-------|-------|-------|-------|
| Final burette reading / cm <sup>3</sup>   | 26.85 | 31.25 | 34.55 | 27.15 |
| Initial burette reading / cm <sup>3</sup> | 0.00  | 5.00  | 8.00  | 1.00  |
| Titre / cm <sup>3</sup>                   |       |       |       |       |
| Concordant results (✓)                    |       |       |       |       |

| (i) | State the colour change observed in the conical flask at the end- <sub>l</sub> | point of |
|-----|--------------------------------------------------------------------------------|----------|
|     | the titration.                                                                 |          |

| From | tο |  |
|------|----|--|
|      |    |  |

(ii) Complete the table and use the concordant results to calculate the mean titre.

(2)



(iii) The reaction taking place in this titration is

$$Ca(OH)_2(aq) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(l)$$

Calculate the concentration of the calcium hydroxide solution in g dm<sup>-3</sup>.

(4)

(d) Dissolving calcium hydroxide in water is an exothermic process.

Describe what you would see if the saturated solution of calcium hydroxide was heated from room temperature to  $50\,^{\circ}$ C. Justify your answer.

(2)

(Total for Question 4 = 19 marks)

**TOTAL FOR PAPER = 50 MARKS** 



**BLANK PAGE** 



**BLANK PAGE** 



# The Periodic Table of Elements

|       | _    |            |          |       |
|-------|------|------------|----------|-------|
| 0 (8) | (18) | 0.4<br>0.0 | helium   | 7     |
| 7     |      |            |          | (17)  |
| 9     |      |            |          | (16)  |
| 2     |      |            |          | (12)  |
| 4     |      |            |          | (14)  |
| 8     |      |            |          | (13)  |
|       | 1.0  |            | hydrogen | Key 1 |
| 7     |      |            |          | (2)   |
| -     |      |            |          | (1)   |

| <u></u>     | ε             | ~                    | _             | _                              | Т         | 0    |         | c                |      |     | 5         | Т        | 3     | _        | ç                                        |       | _        | ç               | 1     |                                                         |                             |  |
|-------------|---------------|----------------------|---------------|--------------------------------|-----------|------|---------|------------------|------|-----|-----------|----------|-------|----------|------------------------------------------|-------|----------|-----------------|-------|---------------------------------------------------------|-----------------------------|--|
| (18)<br>4.0 | helium<br>2   | 20.                  | Ne            | neo C                          | 2         | 39.  | Αľ      | argor<br>18      | 83.8 | 궃   | krypt     | <u>۾</u> | 131.3 | Xe       | xenon<br>54                              | [222] | 駋        | rado<br>86      |       | rted                                                    |                             |  |
|             | (17)          | 19.0                 | Ŀ             | fluorine                       | ^         | 35.5 | ַ<br>כּ | chlorine<br>17   | 79.9 | Br  | bromine   | 3        | 126.9 |          | iodine<br>53                             | [210] |          | ä               |       | been repo                                               |                             |  |
|             | (16)          | 16.0                 | 0             | oxygen                         | ×         | 32.1 | S       | sulfur<br>16     | 79.0 | Se  | selenium  | 34       | 127.6 | <u>1</u> | tellurium<br>52                          | [209] | 8        | polonium<br>84  |       | 116 have                                                | nticated                    |  |
|             | (15)          | 14.0                 | z             | nitrogen                       | \         | 31.0 | ٠       | phosphorus<br>15 | 74.9 | As  | arsenic   | 2        | 121.8 | Sb       | antimony<br>51                           | 209.0 | Bi       | bismuth<br>83   |       | mbers 112                                               | but not fully authenticated |  |
|             | (14)          | 12.0                 | U             | carbon                         | ٥         | 28.1 | Si      | silicon<br>14    | 72.6 | g   | germanium | 35       | 118.7 | Sn       | 20 tj                                    | 207.2 | В        | lead<br>82      |       | atomic nur                                              | but not t                   |  |
|             | (13)          | 10.8                 | 8             | boron                          | 2         | 27.0 | ₹       | aluminium<br>13  | 69.7 | Ga  | gallium   | 2        | 114.8 | 드        | indium<br>49                             | 204.4 | F        | thallium<br>81  |       | Elements with atomic numbers 112-116 have been reported |                             |  |
|             |               |                      |               |                                |           |      |         | (12)             | 65.4 | Zu  | zinc      | 30       | 112.4 | 5        | cadmium<br>48                            | 200.6 | Ę        | mercury<br>80   |       | Elen                                                    |                             |  |
|             |               |                      |               |                                |           |      |         | (11)             | 63.5 | J   | copper    | 67       | 107.9 | Ag       | silver<br>47                             | 197.0 | Αn       | gold<br>79      | [272] | Rg                                                      | roentgenium<br>111          |  |
|             |               |                      |               |                                |           |      |         | (10)             | 58.7 | Έ   | nickel    | 87       | 106.4 | Ь        | palladium<br>46                          | 195.1 | చ        | platinum<br>78  | [271] | Ds                                                      | darmstadtium<br>110         |  |
|             |               |                      |               |                                |           |      |         | (6)              | 58.9 | ပိ  | cobalt    | 7        | 102.9 | 몺        | rhodium<br>45                            | 192.2 | <u>_</u> | iridium<br>77   | [368] | ۸ŧ                                                      | meitnerium<br>109           |  |
| 0: <b>T</b> | nydrogen<br>1 |                      |               |                                |           |      |         | (8)              | 55.8 | Fe  | iron      | 97       | 101.1 | Ru       | ruthenium<br>44                          | 190.2 | o        | osmium<br>76    | [277] | ¥                                                       | hassium<br>108              |  |
|             |               |                      |               |                                |           |      |         | 6                | 54.9 | W   | manganese | 27       | [88]  | բ        | technetium<br>43                         | 186.2 | Re       | rhenium<br>75   | [264] |                                                         | bohrium<br>107              |  |
|             |               | mass                 | pol           | Imber                          | מוווספו   |      |         | (9)              | 52.0 | ъ   | ਚ         | 47       | 95.9  | Wo       | molybdenum technetium ruthenium 42 43 44 | 183.8 | ≯        | tungsten<br>74  | [596] | Sg                                                      | seaborgium<br>106           |  |
|             | Key           | relative atomic mass | atomic symbol | name<br>atomic (proton) number | (piotoli) |      |         | (2)              | 50.9 | >   | vanadium  | 57       | 92.9  | ð        | niobium<br>41                            | 180.9 | Ta       | tantalum<br>73  | [292] | <b>P</b>                                                | dubnium<br>105              |  |
|             |               | relati               | ato           | atomic                         | atollic   |      |         | 4                | 47.9 | ï   | titanium  | 77       | 91.2  | Zr       | zirconium<br>40                          | 178.5 | Ŧ        | hafnium<br>72   | [261] | ₹                                                       | rutherfordium<br>104        |  |
|             |               |                      |               |                                |           |      |         | (3)              | 45.0 | S   | scandium  | 17       | 88.9  |          | yttrium<br>39                            | 138.9 | La*      | lanthanum<br>57 | [227] |                                                         | actinium<br>89              |  |
|             | (2)           | 9.0                  | Be            | beryllium                      | 4         | 24.3 | Mg      | magnesium<br>12  | 40.1 | ပ္ပ | calcium   | 07       | 87.6  | 'n       | strontium<br>38                          | 137.3 | Ba       | _               | [526] | Ra                                                      | radium<br>88                |  |
|             | (1)           | 6.9                  | :5            | lithium                        | າ         | 23.0 |         | sodium<br>11     | 39.1 | ¥   | potassium | 41       | 85.5  | 8        | rubidium<br>37                           | 132.9 | ర        | caesium<br>55   | [223] | ቴ<br>የ                                                  | francium<br>87              |  |
|             |               |                      |               |                                |           |      |         |                  |      |     |           |          |       |          |                                          |       |          |                 |       |                                                         |                             |  |

| 1775 |
|------|
| S    |
| ·Ĕ   |
| ē    |
| S    |
| 육    |
| ·≅   |
| ĕ    |
| ػ    |
| Ħ    |
| ā    |
|      |
| •    |
|      |

<sup>\*</sup> Actinide series

|       |        |              |    | _     |          | _            |     |
|-------|--------|--------------|----|-------|----------|--------------|-----|
|       | 3      | =            |    | [257] | בֿ       | lawrencium   | 103 |
| 173   | χ      | ytterbium    | 70 | [254] | ž        | nobelium     | 102 |
| 169   | Ē      | thulium      | 69 | [326] | PΨ       | mendelevium  | 101 |
|       | ᆸ      |              |    | [253] | Fm       | fermium      | 100 |
| 165   | 우      | holmium      | 67 | [254] | E        | einsteinium  | 66  |
| 163   | δ      | dysprosium   | 99 | [251] | უ        | californium  | 98  |
| 159   | 4      | terbium      | 92 | [245] | 쑮        | berkelium    | 46  |
|       | Ъ      | ã            |    | [247] | ٣        | anium        | 96  |
| 152   | Eu     | europium     | 63 | [243] | Αm       | americium    | 95  |
| 120   | Sm     | samarium     | 62 | [242] | Pu       | plutonium    | 94  |
| [147] | Pm     | promethium   | 61 | [237] | å        | neptunium    | 93  |
| 144   | P      | neodymium    | 9  | 238   | <b>-</b> | uranium      | 92  |
| 141   | P      | praseodymium | 59 | [231] | Pa       | protactinium | 91  |
| 140   | e<br>O | cerinm       | 58 | 232   | £        | thorium      | 06  |
|       |        |              |    |       |          |              |     |