Please check the examination details bel	ow before ente	tering your candidate information						
Candidate surname		Other names						
Centre Number Candidate N	umber							
Pearson Edexcel International Advanced Level								
Time 1 hour 45 minutes	Paper reference	WCH15/01						
Chemistry		♦						
International Advanced Le	evel							
		asnic						
UNIT 5: Transition Metals	and Org	ganic						
Nitrogen Chemistry		J						
(V. d.)								
You must have:		Total Marks						
Scientific calculator, Data Booklet, rul	er							

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- In the question marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- **1** This question is about catalysts.
 - (a) Some standard electrode potentials are shown.

Right-hand electrode system	E [⊕] /V				
$Cu^{2+} + e^{-} \rightleftharpoons Cu^{+}$	+0.15				
$I_2 + 2e^- \rightleftharpoons 2I^-$	+0.54				
$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	+0.77				
Cl₂ + 2e⁻ ⇌ 2Cl⁻	+1.36				
$S_2O_8^{2-} + 2e^- \rightleftharpoons 2SO_4^{2-}$	+2.01				

Which of these ions is most likely to catalyse the reaction between $S_2O_8^{2-}$ and I^- ?

$$\mathsf{S_2O_8^{2-}} \ + \ 2\mathrm{I^-} \ \to \ 2\mathsf{SO_4^{2-}} \ + \ \mathrm{I_2}$$

(1)

- A Cl⁻
- lacksquare **B** Fe²⁺
- **D** Cu⁺
- (b) Which term best describes the type of catalyst for the reaction in (a)?

(1)

- A autocatalyst
- B biocatalyst
- □ C heterogeneous
- □ homogeneous

(c) Which substance is manufactured in a process involving a reaction catalysed by vanadium(V) oxide?

(1)

- **A** ammonia
- B nitric acid
- **C** sodium hydroxide
- D sulfuric acid

(Total for Question 1 = 3 marks)

- 2 This guestion is about alkaline hydrogen-oxygen fuel cells.
 - (a) What is the half-equation at the **negative** electrode?

(1)

- \blacksquare A $H_2(g) + 2OH^-(aq) \rightarrow 2H_2O(l) + 2e^-$
- \square **C** $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$
- \square **D** 4OH⁻(aq) \rightarrow O₂(g) + 2H₂O(l) + 4e⁻
- (b) Which statement is correct for an alkaline hydrogen-oxygen fuel cell when compared with an acidic hydrogen-oxygen fuel cell?

(1)

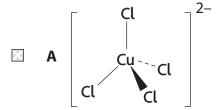
- \triangle **A** E_{cell}^{Θ} is greater
- \square **B** $\Delta S_{\text{total}}^{\Theta}$ is greater
- \square **D** K_c is greater

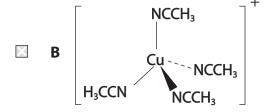
(Total for Question 2 = 2 marks)

Use this space for rough working. Anything you write in this space will gain no credit.

3 Excess aqueous sodium thiosulfate is added to an aqueous solution of ammonium vanadate(V).

What colour is the mixture when the reaction is complete?


Refer to page 10 of the Data Booklet.


- A yellow
- **B** blue
- **D** violet

(Total for Question 3 = 1 mark)

Use this space for rough working. Anything you write in this space will gain no credit.

4 Which transition metal complex is commonly used as a treatment for cancer?

(Total for Question 4 = 1 mark)

- **5** Which reagent, when added to aqueous sodium dichromate(VI), Na₂Cr₂O₇(aq), causes a shift in equilibrium resulting in the formation of a yellow solution?
 - A NaOH(aq)
 - B HCl(aq)

 \square **D** H₂O₂(aq)

(Total for Question 5 = 1 mark)

6 A titre has an uncertainty of 0.32%. The uncertainty of each burette reading is $\pm 0.05 \, \text{cm}^3$.

What is the most likely value of the titre in cm³?

- **A** 6.40
- **■ B** 15.60
- **C** 31.25
- **■ D** 32.00

(Total for Question 6 = 1 mark)

- **7** This question is about polymers.
 - (a) A repeat unit of the polymer PET has the structure shown.

What is the percentage by mass of carbon in the repeat unit?

(1)

- A 57.1 %
- **■** 62.5 %
- **C** 65.2 %
- **D** 66.7%

(b) One of the monomers used to make PET is benzene-1,4-dicarboxylic acid.

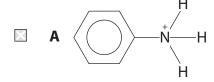
How many peaks are there in the ¹³C NMR spectrum of benzene-1,4-dicarboxylic acid?

(1)

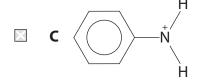
- A 2
- **■ B** 3
- X C 4
- (c) The repeat unit of another polymer has the structure shown.

This polymer is formed from

(1)


- A a single type of monomer by an addition reaction
- **B** a single type of monomer by a condensation reaction
- C two different types of monomer by an addition reaction
- **D** two different types of monomer by a condensation reaction

(Total for Question 7 = 3 marks)


Use this space for rough working. Anything you write in this space will gain no credit.

8 Which ion is formed when a mixture of sodium nitrite, NaNO₂, and dilute hydrochloric acid reacts with phenylamine at a temperature of 5°C?

 \square D $\stackrel{\uparrow}{\bigcirc}$ $\stackrel{\downarrow}{\bigcirc}$

(Total for Question 8 = 1 mark)

Use this space for rough working. Anything you write in this space will gain no credit.

9 This question is about a Grignard reagent, 2-methylpropylmagnesium bromide.

This Grignard reagent can be prepared by refluxing 1-bromo-2-methylpropane with magnesium in a flask containing a dry solvent and anti-bumping granules.

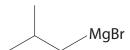
(a) Which solvent is used in this preparation?

(1)

- **A** ethanol
- **B** ether
- C pentane
- **D** propanone
- (b) Why are anti-bumping granules added to the flask?

(1)

- A to lower the boiling temperature of the solvent
- **B** to prevent the solvent evaporating
- C because the solvent is highly flammable
- **D** to ensure the solvent boils smoothly
- (c) The structure of 2-methylpropylmagnesium bromide is shown.


Which statement best describes the circled carbon atom?

(1)

- A positive and electrophilic
- B positive and nucleophilic
- C negative and electrophilic
- **D** negative and nucleophilic

(d) Which compound reacts with 2-methylpropylmagnesium bromide to form 4-ethyl-2-methylheptan-4-ol?

2-methylpropylmagnesium bromide

OH

4-ethyl-2-methylheptan-4-ol

(1)

- A hexan-3-one
- **B** hexan-2-one
- C hexan-3-ol
- **D** hexan-2-ol

(Total for Question 9 = 4 marks)

Use this space for rough working. Anything you write in this space will gain no credit.

10 This question is about the amino acid serine.

(a) Which ion is most likely to form if serine is dissolved in sodium carbonate solution?

(1)

(b) Serine has a melting temperature in the region of 200–300 °C.

This high melting temperature is mainly due to the formation of

(1)

- A hydrogen bonds X
- X ionic bonds
- X London forces
- X **D** peptide bonds

(Total for Question 10 = 2 marks)

11 Which is correct for the reaction of bromine with phenol when compared with benzene?

X Α

В X

X C

X D

Reactivity of phenol	Electron density of the ring in phenol
more reactive	higher electron density
more reactive	lower electron density
less reactive	higher electron density
less reactive	lower electron density

(Total for Question 11 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

BLANK PAGE

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

12 This question is about 2-ethanoylaminobenzoic acid. Crystals of this compound emit flashes of light when crushed.

2-ethanoylaminobenzoic acid can be synthesised using benzene as a starting material.

(a) A student proposed a mechanism for Step 1.

$$^{+}CH_{3}$$
 $^{+}CH_{3}$ $^{+}H^{+}$

$$H^+ + AlCl_4^- \longrightarrow HCl + AlCl_3$$

CH₃Cl + AlCl₃ → ⁺CH₃ + AlCl₄

(i) Identify **two** errors in the mechanism by circling them.

(2)

(ii) State how the errors identified in (a)(i) should be corrected. Justify your answer in terms of the structures involved.	(2)
(b) Give a reason why it is important to keep the temperature below 30 °C in Step 2.	(1)
(c) State the type of reaction in Stan 3	
(c) State the type of reaction in Step 3 .	(1)
(d) Identify, by name or formula, the reagents needed for Step 4 .	(1)

(4)

(e	e) Explain how the structures of ethanoyl chloride, CH ₃ COCl, and compound A enable them to react forming 2-ethanoylaminobenzoic acid in Step 5 .	(3)
(f) Calculate the volume of benzene required to form 5.92 g of 2-ethanoylaminobenzoic acid, assuming the overall yield for the synthesis is 28.2%.	
	Give your answer to an appropriate number of significant figures.	
	[Density of benzene = $0.879 \mathrm{g cm^{-3}}$]	

(Total for Question 12 = 14 marks)

BLANK PAGE

13		mpare and contrast the reactions in aqueous solution of nickel(II) sulfate with dium hydroxide and with ammonia.	
	For	each reaction include	
	•	what would be seen	
	•	the equation (state symbols are not required)	
	•	the type of reaction.	
			(6)

- **14** A compound, **Q**, is a pale yellow liquid that is the main constituent of cinnamon oil. **Q** contains the elements carbon, hydrogen and oxygen only.
 - (a) Complete combustion of $6.02\,\mathrm{g}$ of \mathbf{Q} produces $18.07\,\mathrm{g}$ of carbon dioxide and $3.30\,\mathrm{g}$ of water.

Determine the empirical formula of **Q**.

(4)

(b) Tests on samples of **Q** show that it

- burns in air with a very sooty flame
- forms an orange precipitate with Brady's reagent (2,4-dinitrophenylhydrazine solution)
- forms a silver precipitate with Tollens' reagent
- decolourises bromine water
- exists as a pair of geometric isomers.

Deduce a structure for **Q**, explaining how each piece of information supports your answer.

(6)

(Total for Question 14 = 10 marks)

- 15 This question is about transition metal compounds and their quantitative analysis.
 - (a) Potassium dichromate(VI), K₂Cr₂O₇, is present in very small amounts in cement, to help increase the time for the cement to set.

A 50.0 g sample of cement was washed with portions of deionised water to dissolve the potassium dichromate(VI). Any insoluble residues were removed by filtration and the filtrate was transferred to a volumetric flask. The volume was made up to 100.0 cm³, using 2 mol dm⁻³ sulfuric acid.

 $50.0\,\mathrm{cm^3}$ of this solution was transferred to a conical flask and titrated with a solution of ammonium iron(II) sulfate, $(NH_4)_2Fe(SO_4)_2(aq)$, of concentration $3.24\times10^{-4}\,\mathrm{mol\,dm^{-3}}$.

The indicator *N*-phenylanthranilic acid was used, which gave an intense red-violet colour at the end-point.

The mean titre of ammonium iron(II) sulfate was 10.90 cm³.

The ionic equation for the redox reaction in the titration is shown.

$$6Fe^{2+}(aq) + Cr_2O_7^{2-}(aq) + 14H^+(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l) + 6Fe^{3+}(aq)$$

(i) State the colour of each chromium species in the reaction.

(1)

Cr₂O₇²⁻

Cr³⁺

(ii) Suggest a reason why an indicator is needed in this titration.

(1)

(iii) Calculate the percentage by mass of potassium dichromate(VI) in the cement sample.

(5)

(b) N-phenylanthranilic acid has the structure shown.

The solution used as an indicator was prepared by mixing 100 mg of this acid in 5 cm³ of sodium hydroxide solution, NaOH(aq).

The mixture was then diluted to 100 cm³ with deionised water.

Explain why the *N*-phenylanthranilic acid is added to the sodium hydroxide solution before it is mixed with water in the preparation of this solution.

(2)

(c) The concentration of chromium(VI) in aqueous solution may also be determined using a colorimeter.

On adding 1,5-diphenylcarbazide, DPC, to a solution of chromium(VI) ions, an intensely coloured octahedral complex forms. The formula of the complex is $Cr(DPC)_3^{6+}$.

(i) The structure of DPC is shown.

Describe how DPC is able to act as a bidentate ligand, using your diagram to show the atoms involved.

(3)

 (ii) The intense colour of this complex is due to the transfer of electrons from the ligand to the chromium(VI) ion. Suggest a possible reason why the colour is not due to the transfer of electrons between split d-orbitals in the ion. Refer to the electronic configuration of the chromium(VI) ion. 	(1)
(d) The concentration of nickel(II) ions, $Ni^{2+}(aq)$, can be determined by forming a complex with the ligand dimethylglyoxime, $C_4H_8N_2O_2$. $[Ni(H_2O)_6]^{2+} + 2C_4H_8N_2O_2 + 2OH^- \rightarrow [Ni(C_4H_7N_2O_2)_2(H_2O)_2] + 6H_2O$ Explain why the formation of the dimethylglyoxime complex is favoured, in terms of entropy.	(2)
(Total for Question 15 = 15 ma	ırks)

16 The ester ethyl 2-methylbutanoate is found in wild berries such as bilberries.

Devise a synthesis to convert but-2-ene into ethyl 2-methylbutanoate in **four** steps.

but-2-ene

ethyl 2-methylbutanoate

Include the reagents and essential conditions for each step and the name or structure of each of the intermediate compounds.

Details of practical procedures are not required.

(Total for Question 16 = 6 marks)

TOTAL FOR SECTION B = 51 MARKS

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

17

Gilding Metal

Gilding metal is a type of brass alloy that consists of copper and a small amount of zinc, ranging from 5% to 11% by mass. Copper is very malleable and is hardened by the addition of zinc.

Gilding metal is much less susceptible to cracking due to corrosion than brasses with a higher percentage of zinc.

It has a warm, golden colour and can be used to coat materials using electrolysis. It is also used to make test pieces in jewellery manufacture because it has similar properties to silver but is less expensive.

The proportions of copper and zinc determine the exact properties of the gilding metal and can be determined by chemical analysis.

(a) $2.72\,g$ of a type of brass is dissolved in excess concentrated nitric acid, forming a solution containing both Cu^{2+} and Zn^{2+} ions.

A solution containing hydrogensulfate(IV) ions, HSO₃, is then added.

$$2Cu^{2+}(aq) \ + \ HSO_3^-(aq) \ + \ H_2O(l) \ \to \ 2Cu^+(aq) \ + \ HSO_4^-(aq) \ + \ 2H^+(aq)$$

The addition of ammonium thiocyanate, NH₄SCN, gives a precipitate of copper(I) thiocyanate, CuSCN.

$$Cu^{+}(aq) + SCN^{-}(aq) \rightarrow CuSCN(s)$$

The precipitate of copper(I) thiocyanate is collected, dried and found to have a mass of 4.69 g.

(i) Determine whether or not this type of brass is a gilding metal, by calculating its percentage by mass of copper.

(4)

(ii) Explain, by considering both thermodynamic and kinetic factors, why HSO₃ reduces Cu²⁺ to Cu⁺ but does **not** then reduce Cu⁺ to Cu. Use the data in the table.

(3)

Right-hand electrode system	E [⊕] /V
Cu²+ + e⁻ ⇌ Cu⁺	+0.15
$HSO_4^- + 2H^+ + 2e^- \rightleftharpoons HSO_3^- + H_2O$	+0.17
Cu⁺ + e⁻ ⇌ Cu	+0.52

(b) After the copper(I) thiocyanate is precipitated, Zn ²⁺ ions remain in solution.	
(b) After the copper(i) thocyanate is precipitated, 211 Ions remain in solution.	
A student suggested that these Zn ²⁺ ions can be precipitated by adding a large excess of aqueous sodium hydroxide.	
Comment on this suggestion by describing the reactions that take place as a large excess of aqueous sodium hydroxide is gradually added.	
	(4)
(c) Suggest why gilding metals are less malleable than pure copper, by considering	
their structure.	(2)
	(2)
	(2)
	(2)
their structure.	(2)
	(2)
their structure.	(2)

- (d) Zinc and copper are also used in electrochemical cells.
 - (i) Draw a labelled diagram of the apparatus used to measure the emf of a cell with copper and zinc electrodes under standard conditions.

(3)

(ii) The Nernst equation describes the relationship between the concentration of metal ions in a half-cell and its electrode potential.

$$E = E^{\oplus} + \frac{0.0260}{z} \times \ln[\text{ion}]$$

E = electrode potential under non-standard concentrations

z = the number of positive charges on the metal ion

A cell is set up with Cu^{2+} ions of concentration 1.00 mol dm⁻³ and Zn^{2+} ions of unknown concentration. The emf of the cell is +1.09 V.

Calculate the concentration of the zinc ions.

Use the data on page 10 of the Data Booklet.

(3)

(Total for Question 17 = 19 marks)

TOTAL FOR SECTION C = 19 MARKS TOTAL FOR PAPER = 90 MARKS

	0 (8)	4.0	He	2	20.2	N e	neon 10	39.9	٩Ľ	argon 18	83.8	추	krypton 3 6	131.3	Xe	xenon 54	[222]	R	radon 86		P	
	7	_		(17)	19.0	ш	luorine 9	35.5	ፘ	chlorine 17			bromine 4	126.9	Н	iodine 53	[210]	At	astatine 85		en reporte	
	9			(16)	16.0		oxygen 1	32.1		_	79.0	Se	selenium b	127.6		tellurium 52	[509]		polonium 8 84		16 have be	cated
	2			(15)	14.0		nitrogen 7	31.0	_	phosphorus 15	74.9	As		121.8		antimony te	209.0		bismuth p		oers 112-11	but not fully authenticated
	4			(14)	12.0		carbon r	28.1	Si	silicon ph	72.6	g	germanium 32		Sn		207.2		lead t		omic num	but not ful
	m			(13)	10.8	ω	boron 5	27.0	₹	aluminium 13	69.7	Ga	gallium ge 31	114.8	п	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported	_
ents								<u> </u>		(12) al	65.4	Zu		112.4	<u>გ</u>	cadmium 48	200.6	Η̈́			Eleme	
:leme										(11)	63.5	כה	copper 29	107.9			197.0		gold 79	[272]	Rg	entgenium 111
e of I								(10)			58.7	ï	nickel 28	106.4	Pd	palladium 46	195.1	T	platinum 78	[271]	Mt Ds Rg	armstadtium ro 110
Tabl	1.0									(6)	58.9	ပိ	cobalt 27	102.9	뫈	rhodium p	192.2		iridium 77	[368]	Mt	neitnerium d 109
riodic		1.0 H hydrogen	H hydrogen	-				(8)			55.8	Fe	iron 26	101.1	Ru	uthenium 44	190.2	ő	osmium 76		Hs	hassium n
The Periodic Table of Elements										(2)	54.9	W	nanganese 25	[86]	ည	molybdenum technetium ruthenium 42 44	186.2	Re	rhenium 75	[264]	Bh	bohrium 107
<u></u>					nass		ımber			(9)	52.0	ڻ	chromium manganese 24 25	95.9	Wo	nolybdenum t	183.8	>	tungsten 74	[592]	Sg	eaborgium 106
				Key	relative atomic mass	atomic symbol	name atomic (proton) number			(5)	50.9	>	vanadium 23	92.9	Q	niobium n	180.9	Та	tantalum 73	[292]	ОР	dubnium s
					relativ	ator	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]		rutherfordium 104
										(3)	45.0	Sc	scandium 21	88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227]		actinium n
	7			(2)	9.0	Be	beryllium 4	24.3	Ag	magnesium 12	40.1	Ca	_	97.6	٦	strontium 38	137.3	Ва	barium l	[526]		radium 88
	-			(1)	6.9	בי	lithium 3	23.0	Na	_	39.1	¥	potassium 19	85.5	&	rubidium 37	132.9	S	caesium 55	[223]	፫	francium 87
													_								_	

	140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
* I southanide ceries	ဗ	Ce Pr Nd	PZ	Pm	Sm		В	P	δ	운	ш	E	Ϋ́	
במוומו וותב אבו ובא	cerium	praseodymium	neodymium	<u>E</u>	samarium	europium	മ്	terbium	dysprosium	holmium	erbium		ytterbium	
	28	29	09		62	63		65	99	29	68		70	71
•	232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
* Actinido corios	ᆮ	Pa	⊃	å	Pu	Αm	<u>ٿ</u>	쓙	უ	Es	FI	ÞΨ	<u>گ</u>	۲
שרנווותר זרוורז	thorium	protactinium	uranium	neptunium	plutonium	americium	anium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	8	90 91 92	92	93	94	95	96	67	86	66	100	101	102	103