Please check the examination details below before entering your candidate information							
Candidate surname	Other names						
Centre Number Candidate No	umber						
Pearson Edexcel Inter	Pearson Edexcel International Advanced Level						
Time 1 hour 30 minutes	Paper reference	WCH11/01					
Chemistry							
International Advanced Su UNIT 1: Structure, Bondin Organic Chemistry	•	·					
You must have: Scientific calculator, ruler		Total Marks					

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 Elements in their most stable state exist as
 - **A** atoms in giant structures only
 - **B** atoms in molecules and atoms in giant structures only
 - C isolated atoms and atoms in giant structures only
 - **D** isolated atoms, atoms in molecules and atoms in giant structures

(Total for Question 1 = 1 mark)

2 A sample of nitrogen gas contains 1.204×10^{22} molecules.

What is the mass of this sample?

$$[A_r \text{ N} = 14.0 \text{ Avogadro constant } (L) = 6.02 \times 10^{23} \text{ mol}^{-1}]$$

- A 0.14 g
- **B** 0.28 g

(Total for Question 2 = 1 mark)

3 When magnesium oxide reacts with dilute sulfuric acid the equation is

$$MgO(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2O(l)$$

What is the ionic equation for the reaction?

- **A** MgO(s) + $2H^{+}(aq) + SO_{4}^{2-}(aq) \rightarrow Mg^{2+}(aq) + SO_{4}^{2-}(aq) + H_{2}O(l)$
- \square **C** $Mg^{2+}(s) + SO_4^{2-}(aq) \rightarrow Mg^{2+}(aq) + SO_4^{2-}(aq)$
- \square **D** $O^{2-}(s) + 2H^{+}(aq) \rightarrow H_2O(l)$

(Total for Question 3 = 1 mark)

4 A solution of sodium chloride, NaCl, is prepared by dissolving 10.0 g of the solid in distilled water and making the solution up to 250.0 cm³.

What is the concentration of the solution, in mol dm⁻³?

$$[M_r \text{ NaCl} = 58.5]$$

- A 0.171
- **B** 0.684
- **D** 40.0

(Total for Question 4 = 1 mark)



5 Ten test tubes, each containing 1.0 cm³ of a chromium chloride solution of concentration 0.1 mol dm⁻³, were placed in a test tube rack.

Different volumes of silver nitrate solution of concentration 0.1 mol dm⁻³ were added to each test tube, giving a precipitate of silver chloride.

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

The precipitates formed were allowed to settle and their heights measured. The results were plotted on a graph.

What is the formula of the chromium chloride?

- A CrCl
- B Cr₃Cl₄
- C Cr₄Cl₃
- ☑ D CrCl₃

(Total for Question 5 = 1 mark)

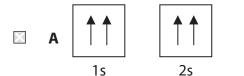
- **6** The atomic number of the element scandium is 21 and the mass number of its only isotope is 45.
 - (a) What is the number of electrons in a scandium ion, Sc⁺?

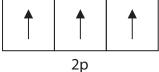
(1)

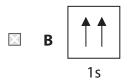
- B 21
- D 23
- (b) In a mass spectrometer, scandium forms Sc^+ and Sc^{2+} ions.

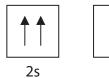
What is the m/z value for the mass spectrum peak due to the Sc^{2+} ions?

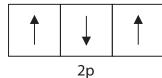
(1)

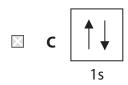

- **■ B** 33.0
- **C** 45.0
- **D** 90.0

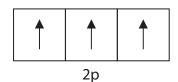

(Total for Question 6 = 2 marks)

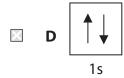

- **7** Which equation represents the first ionisation energy of iodine?
 - \blacksquare **A** $I_2(s) \rightarrow 2I^+(g) + 2e^-$
 - \square **B** $I_2(g) \rightarrow 2I^+(g) + 2e^-$
 - \square **C** $\frac{1}{2}I_2(s) \rightarrow I^+(g) + e^-$
 - \square **D** $I(g) \rightarrow I^+(g) + e^-$

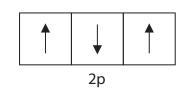

(Total for Question 7 = 1 mark)


8 What is the electronic configuration of a nitrogen atom?








X

X

X

X

(Total for Question 8 = 1 mark)

9 The element manganese has the atomic number Z = 25.

What are the numbers of s, p and d electrons in an atom of manganese?

	s electrons	p electrons	d electrons
A	6	12	7
В	8	12	5
C	6	18	1
D	8	17	0

(Total for Question 9 = 1 mark)

10 Which row in the table shows the correct forces in a crystal of lithium iodide?

		Attractive forces between ions with opposite charges	Repulsive forces between ions with like charges	Some covalent bonding forces
X	Α	✓	X	X
×	В	✓	✓	×
X	C	✓	X	✓
X	D	✓	✓	✓

(Total for Question 10 = 1 mark)

11 Some physical properties of five substances are shown. The letters are **not** element symbols.

	Ele	Melting		
Substance	Solid	Liquid	Solution in water	temperature /°C
L	poor	good	good	770
М	good	good	reacts	98
N	good	good good		1083
Р	poor	poor poor		113
Q	poor poor		good	10

	((a)	Which	of these	substances	could	be n	netals	
--	---	-----	-------	----------	------------	-------	------	--------	--

(1)

- A N only
- B L and M only
- C M and N only
- **D** L, M and N only
- (b) Which substance has properties showing that it changes from a molecular structure to ions when it dissolves in water?

(1)

- A L
- B M
- \square **D** Q

(Total for Question 11 = 2 marks)

12 At 180 °C, aluminium chloride exists as Al₂Cl₆.

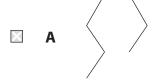
What is the structure of Al_2Cl_6 ?

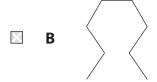
(Total for Question 12 = 1 mark)

13 When carrying out chemical experiments, the hazards and risks must be considered.

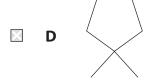
For a given chemical

- A the hazard is fixed but the risk varies
- **B** the hazard varies but the risk is fixed
- C both hazard and risk are fixed
- **D** both hazard and risk vary


(Total for Question 13 = 1 mark)


- **14** Heterolytic fission produces
 - A free radicals only
 - **B** ions only
 - C free radicals and positive ions only
 - D free radicals and negative ions only

(Total for Question 14 = 1 mark)


15 A hydrocarbon **X** has a molar mass of 98 g mol⁻¹. When a sample of **X** is shaken with bromine water, the colour of the bromine water does **not** change.

Which of these could be the structure of **X**?

(Total for Question 15 = 1 mark)

- **16** Which of these atmospheric pollutants is **not** emitted during the combustion of alkane car fuels?
 - **A** ammonia
 - **B** nitrogen dioxide
 - C sulfur dioxide
 - **D** octane

(Total for Question 16 = 1 mark)

- **17** Which of these occurs in a **propagation** step in the reaction of methane with chlorine?

 - B H₃C Cl—Cl

(Total for Question 17 = 1 mark)

18 What is the IUPAC name for the compound with the structure shown?

- A cis-2-chlorobut-2-ene
- **■** *trans*-2-chlorobut-2-ene
- **D** *Z*-2-chlorobut-2-ene

(Total for Question 18 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- **19** The element iron forms two chlorides: iron(II) chloride, FeCl₂, and iron(III) chloride, FeCl₃.
 - (a) A known mass of iron powder is added to 200 cm³ of a hot solution of iron(III) chloride with a concentration of 0.500 mol dm⁻³. When the reaction is complete, the solution only contains iron(II) chloride. The unreacted iron is filtered, dried and weighed.

Initial mass of iron powder = 6.17 gFinal mass of iron powder = 3.38 g

(i) Calculate the number of moles of iron that react.

(2)

(ii) Calculate the number of moles of iron(III) chloride that react.

(2)

(iii) Use your answers to (a)(i) and (a)(ii) to write the **ionic** equation for the reaction of iron with iron(III) chloride. Include state symbols. You **must** show your working.

(3)

(b) The concentration of the solution obtained in (a) is increased by heating it gently to remove some of the water. The solution is allowed to cool and pale green crystals of a hydrated iron(II) chloride, FeCl₂·xH₂O, form.

Analysis shows that these crystals contain 28.1% by mass of iron.

Calculate the number of moles of water of crystallisation, x, per mole of hydrated iron(II) chloride.

(4)

(Total for Question 19 = 11 marks)

- **20** Naturally occurring bromine has two isotopes: bromine-79 and bromine-81.
 - (a) State what is meant by the term isotopes.

(1)

(b) Complete the table to show the numbers of subatomic particles in the two isotopes of bromine.

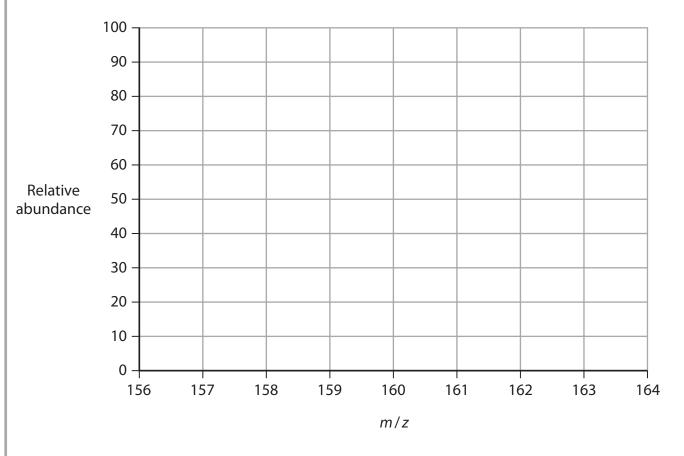
(2)

Isotope	Protons	Neutrons	Electrons
bromine-79			
bromine-81			

- (c) The mass spectrum of a sample of bromine is obtained.
 - (i) Draw a dot-and-cross diagram to show the bonding in a molecule of bromine. Only the outer electrons should be shown.

(2)

(ii) Describe the formation of the molecular ion of bromine in the mass spectrometer. Include an equation.


State symbols are not required.

(2)

(iii) On the mass spectrum grid, draw the peaks for the bromine molecular ions, showing the relative peak heights.

The bromine isotopes in this sample have the **same** relative abundance.

(2)

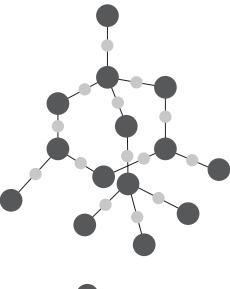
(d) The percentage abundances of the isotopes in a different sample of bromine are shown.

Isotope	Percentage abundance
bromine-79	56.38%
bromine-81	43.62%

Calculate the relative **molecular** mass of this sample of bromine, giving your answer to **two** decimal places.

(3)

(Total for Question 20 = 12 marks)


21 The elements carbon and silicon both form dioxides.	
(a) Carbon dioxide is a simple covalent molecule but silicon dioxide has a giant covalent structure.	
(i) Describe the covalent bond between a silicon atom and an oxygen atom in	
silicon dioxide, in terms of the particles involved.	
(2)	
(ii) Commence and construct the construct have discovered and in the construction of t	
(ii) Compare and contrast the covalent bonding in carbon dioxide and silicon dioxide in terms of orbital overlap.	
(3)	

(i) Expl	ain the shape of the carbon dioxide molecule.	
•	•	(3)
(ii) Expl	ain the polarity of the carbon–oxygen bond.	(2)
		(2)
/***\		1
(III) State Justi	e whether or not the carbon dioxide molecule is p fy your answer.	oolar.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1)

(c) The structure of silicon dioxide may be referred to as a diamond structure.

silicon

oxygen

(i) Using your knowledge of the structure of diamond, suggest how the structure of silicon dioxide is similar to that of diamond.

(1)

(ii) Give a possible reason why silicon dioxide has a lower melting temperature than diamond, even though the Si—O bond is stronger than the C—C bond.

(1)

(Total for Question 21 = 13 marks)

- **22** Zingiberene is the compound that gives ginger its characteristic flavour. Its IUPAC name is 2-methyl-5-(6-methylhept-5-en-2-yl)cyclohexa-1,3-diene.
 - (a) On the structure of zingiberene, draw a circle around the '2-methyl' group referred to in the IUPAC name.

(1)

(b) Deduce the molecular formula of zingiberene.

(2)

(c) When zingiberene reacts with excess hydrogen bromide, there are a number of possible products. The structure of the major product is shown.

(i) Name the type and mechanism of the reaction.

(1)

(ii) The diagram shows a simplified structure of zingiberene, in which part of the molecule is represented by A.

Complete the mechanism for the reaction of zingiberene with **one** molecule of hydrogen bromide.

Include curly arrows, and any relevant dipoles and lone pairs.

(4)

(iii) For the reaction in (c)(ii) there are two possible products:

I

II

Explain why I is the major product, by referring to your mechanism.

(2)

(d) Zingiberene reacts with hydrogen gas in the presence of a catalyst.

(i) Identify the catalyst, by name or formula.

(1)

(ii) 2.0 mol of zingiberene react completely with hydrogen at $150\,^{\circ}\text{C}$ and a pressure of $120\,\text{kPa}$.

Calculate the minimum volume of hydrogen needed under these conditions, stating your units.

[Ideal gas equation is pV = nRT Gas constant $(R) = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$]

(4)

(Total for Question 22 = 15 marks)

- **23** Organic waste may be disposed of by landfill or incineration. Both processes produce gases.
 - (a) The main gases produced from a typical landfill are shown in the table.

Gas	Percentage by volume/%
methane	50
carbon dioxide	45
nitrogen	4
sulfur compounds	1

(i) Name the process that forms these gases in landfill.

(1)

(ii) State the **main** environmental problem caused by landfill gases, identifying the gas or gases responsible.

(2)

(iii) One tonne of landfill waste produces approximately 12.5 dm³ of landfill gases per day.

Calculate the mass of carbon dioxide produced in a year by a typical landfill site which contains 90 000 tonnes of waste.

Assume that the gas volume is measured at room temperature and pressure (r.t.p.). [Molar volume of gas at r.t.p. = $24.0 \,\mathrm{dm^3 \,mol^{-1}}$]

(3)

(b) Suggest two advantages of incineration over landfill.	(2)
(c) Environmental groups prefer recycling to both landfill and incineration.	
Suggest one advantage of recycling.	
	(1)
	• • •
(Total for Question 23 =	y marks)

TOTAL FOR SECTION B = 60 MARKS
TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

The Periodic Table of Elements

0 (8)	(18) 4.0 He	2
7		(17)
9		(16)
2		(15)
4		(14)
က		(13)
	1.0 H hydrogen	
		Key
2		(2)
_		(1)

			_										_				_					ı			
9.0	H		20.2	Ne	neon	10	39.9	Αľ	argon 18	83.8	궃	krypton	36	131.3	Xe	xenon	24	[222]	R	radon	86		ted		
		(17)	19.0	L	fluorine	9	35.5	บ	chlorine 17	79.9	Br	bromine	35	126.9	Ι	iodine	53	[210]	Αt	astatine	85		een repor		
		(16)	16.0	0	oxygen	8	32.1	S	sulfur 16	79.0	Se	selenium	34	127.6	<u>P</u>	tellurium	52	[506]	8	polonium	84		116 have b	ticated	
		(15)	14.0	z	nitrogen	7	31.0	۵	phosphorus 15	74.9	As	arsenic	33			$\overline{}$	51	209.0	œ.	bismuth	83		bers 112-	but not fully authenticated	
		(14)	12.0	U	carbon	9	28.1		silicon 14	72.6	ge	germanium	32	118.7	Sn	tị	20	207.2	P	lead	82		atomic nun	but not fu	
		(13)	10.8	8	boron	5	27.0	¥	aluminium 13	69.7	Ga	gallium	31	114.8	ı	indium	49	204.4	F	thallium	81		Elements with atomic numbers 112-116 have been reported		
		'							(12)	65.4	Zn	zinc	30	112.4	<u>გ</u>	cadmium	48	200.6	Η̈́	mercury	80		Elem		
									(11)	63.5	D C	copper	29	107.9	Ag	silver	47	197.0	Αu	plog	79	[272]	Rg	roentgenium 111	
									(10)	58.7	Ë	nickel	28	106.4	Pq	palladium	46	195.1	꿉	platinum	78	[271]	Os	darmstadtium 110	2
									(6)	58.9	ပ	cobalt	27	102.9	R	rhodium	45	192.2	<u>_</u>	iridium	77	[568]	₩	meitnerium 109	
1.0	H hydrogen	-							(8)	55.8	Fe	iron	26	101.1	Ru	ruthenium	4	190.2	S	osmium	76	[277]	¥	hassium 108	3
									0	54.9	Wn	chromium manganese	25	[86]	<u>2</u>	molybdenum technetium ruthenium	43	186.2	Re	rhenium	75	[264]	멂	bohrium 107	2
			mass	pol		number			(9)	52.0	ъ		24	6'36	Wo	molybdenum	42	183.8	>	tungsten	74	[592]	Sg	seaborgium 106	3
		Key	relative atomic mass	atomic symbol	name	atomic (proton) number			(2)	50.9	>	vanadium	23	67.6	g	niobium	41	180.9	ā	tantalum	73	_	8	dubnium 105	3
			relat	ato		atomic			4)	47.9	ï	titanium	22	91.2	Zr	zirconium	9	178.5	¥	hafnium	72	[261]	峜	rutherfordium	5
									(3)	45.0	Sc	scandium	21	88.9	>	yttrium	39	138.9	Ľa*	lanthanum	22	[227]	Ac*	actinium 89	
		(2)	9.0	Be	beryllium	4	24.3	Mg	magnesium 12	40.1	Ca		20	9.78		ş	38	137.3	Ва	barium	26	[526]	Ra	radium 88	
		(1)	6.9	ב	lithium	3	23.0	Na	_	39.1	¥	potassium	19	85.5	ВЪ	rubidium	37	132.9	င	caesium	55	[223]	፫	francium 87	3
																				_	_	_	_	_	

* Lanthanide series

* Actinide series

1	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	[147]	150	152	157	159	163	165	167	169	173	175
4	Ž		Sa	교	႘	P	2	웃	ជ	ᆮ	χ	ב
	oraseodymium neodymiun	m promethium	samarinm	europium	ΩÖ	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
\sim	29 60	61	62	63		65	99	67	89	69	70	71
31] 238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[526]	[254]	[257]
Pa	_	8 Q	Pu	Αm		æ	უ	Es	F	Þ₩	8 N	ב
Cti	_	neptunium	plutonium	americium	0	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
6	92	93	8	95	96	26	86	66	100	101	102	103

