Please check the examination deta	ils bel	ow before ente	ring your candidate information
Candidate surname			Other names
Pearson Edexcel International Advanced Level	Cer	ntre Number	Candidate Number
Time 1 hour 20 minutes		Paper reference	WCH16/01
Chemistry			
International Advanced UNIT 6: Practical Skills			ry II
You must have: Scientific calculator, ruler			Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working in calculations and include units where appropriate.

Information


- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

Answer ALL the questions. Write your answers in the spaces provided.

- 1 This question is about compounds containing the ammonium ion, NH₄⁺.
 - (a) Ammonium vanadate(V), NH₄VO₃, is a white solid.
 - (i) When excess dilute sulfuric acid is added to an aqueous solution of NH_4VO_3 , the VO_3^+ ion is converted into the VO_2^+ ion.

Write the **ionic** equation for the conversion of VO_3^- to VO_2^+ on the addition of dilute sulfuric acid. State symbols are not required.

(1)

(ii) State the colour of an **acidified** solution of ammonium vanadate(V).

(1)

(iii) A student added zinc metal to an acidified solution of ammonium vanadate(V). The zinc reduced the vanadium in a series of reactions.

The student suggested that the sequence of colours observed could be explained by the presence of the vanadium species shown in the table.

Sequence of colours observed	starting → green → blue → green → violet
Suggested vanadium species	$VO_2^+ \longrightarrow V^{3+} \longrightarrow VO^{2+} \longrightarrow V^{3+} \longrightarrow V^{2+}$

Explain whether or not the student is correct.

Refer to oxidation states of vanadium and account for each colour in the sequence.

(2)

	Suggest an explanation for these observations.	
		(2)
V	mmonium tetrachlorocuprate(II) dihydrate, (NH ₄) ₂ CuCl ₄ •2H ₂ O, is a blue-green so Then ammonium tetrachlorocuprate(II) dihydrate is dissolved in water, blue-green solution T is formed.	olid.
(i) Suggest the formulae of two complex ions present in solution T .	(2)
(i	i) State how the colour of solution T would change on the addition of excess concentrated hydrochloric acid.	(1)
(i	ii) Describe what would be observed on the addition of aqueous sodium hydroxide to solution T .	(1)
(i	v) When the mixture from (b)(iii) is warmed, a gas is evolved. Give a test to identify the gas stating the positive result of the test.	(2)

(Total for Question 1 = 15 marks)

(c)	A white solid with a slight vinegar-like smell contains ammonium ions, NH_4^+ , and an anion represented by \mathbf{Y}^- .	
	The smell of vinegar intensifies on the addition of a few drops of concentrated sulfuric acid to an aqueous solution of NH_4Y .	
	On subsequent addition of a few drops of ethanol and heating the mixture, the smell of vinegar is replaced by a sweet and fruity smell.	
	Explain how all this information can be used to identify the anion Y ⁻ .	
		(3)
•••••		

2 This question concerns the laboratory preparation of tetraamminecopper(II) sulfate-1-water, Cu(NH₃)₄SO₄•H₂O.

Procedure

- Step **1** Weigh between 2.1 g and 2.3 g of hydrated copper(II) sulfate, $CuSO_4 \cdot 5H_2O$, in a boiling tube. Add 8 cm³ of distilled water and place the boiling tube in a hot water bath. Stir the mixture until the crystals have dissolved.
- Step 2 Working in a fume cupboard, slowly pour 5 cm³ of concentrated aqueous ammonia into the boiling tube. Stir until a clear solution is obtained.
- Step **3** Measure 12 cm³ of ethanol into a 100 cm³ conical flask and add the contents of the boiling tube from Step **2**. Stopper the flask and swirl the contents before placing the flask in an ice bath. Allow the mixture to stand until crystals of Cu(NH₃)₄SO₄•H₂O have formed.
- Step **4** Filter the crystals obtained in Step **3** under reduced pressure, using a Buchner funnel and flask.
- Step 5 Pour 5 cm³ of cold ethanol over the crystals in the funnel.
- Step 6 Using a spatula, transfer the crystals to a filter paper on a watch glass. Press a second piece of filter paper on the crystals, to dry them as much as possible.
- Step 7 Transfer the crystals to a dry, pre-weighed sample bottle and reweigh.
- (a) Give a reason why a measuring cylinder is more suitable than a graduated pipette for measuring the distilled water in Step 1.

(1)

(b) Give the colour of the solution at the end of Step 2.

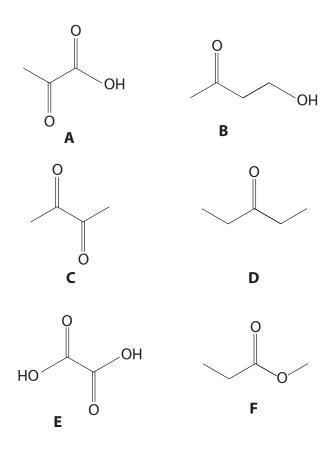
(1)

(c) Give the reason why Step 2 should be carried out in a fume cupboard.

(1)

d) Give the reason why the addition of ethanol in Step 3 results in the precipitation of crystals of $Cu(NH_3)_4SO_4 \cdot H_2O$.	n (1)
e) Draw a labelled diagram of the apparatus used to filter the crystals under reduced pressure in Step 4 .	
	(3)
i) (i) State the purpose of the ethanol in Step 5 .	(1)
(ii) Give a reason why the ethanol is cold.	(1)

- (g) Starting with 2.17 g of $CuSO_4 \cdot 5H_2O$ and using excess ammonia, a student obtained 2.54 g of product.
 - (i) Calculate the **apparent** percentage yield of Cu(NH₃)₄SO₄•H₂O. Give your answer to an appropriate number of significant figures.


(3)

(ii) Suggest a reason why the apparent percentage yield in this preparation is often greater than 100%.

(1)

(Total for Question 2 = 13 marks)

3 This question is about the identification of six organic compounds.

- (a) From A, B, C, D, E and F, identify the compound with
 - (i) the fewest peaks in its **carbon-13** NMR spectrum.

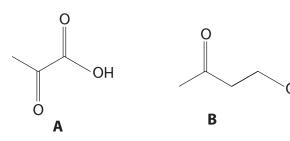
(1)

(ii) the most peaks in its **low** resolution **proton** NMR spectrum.

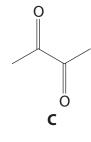
(1)

(iii) three peaks with relative peak area 3:2:3 in its **low** resolution proton NMR spectrum.

(1)


(iv) one triplet and one quartet as the only peaks in its **high** resolution proton NMR spectrum.

(1)

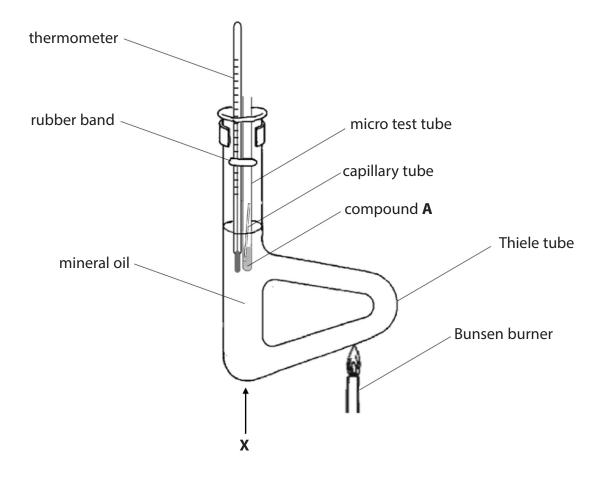

(b) For each of the following pairs, give **one chemical** test, not including indicators, that could be used to distinguish the compounds.

Identify the reagents and give the results of each test.

(i) A and B

(ii) C and D	(ii) C	and	d b
----------------------------	-----	------------	-----	-----

D


|
 |
|------|
|
 |
|
 |
|
 |

(2)

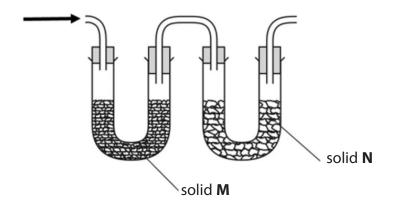
(2)

(c) Liquids boil at the temperature at which their vapour pressure is equal to atmospheric pressure.

The apparatus shown below was used to determine the boiling temperature of compound **A**, which is a liquid at room temperature and pressure and has a boiling temperature in the range 120°C to 180°C.

Procedure

- Step 1 Place a capillary tube, sealed at one end and with the open end facing down, into 0.5 cm³ of compound **A** in a micro test tube. Attach the micro test tube to a thermometer with a rubber band.
- Step 2 Clamp the micro test tube and thermometer in the mineral oil, making sure neither test tube nor thermometer bulb is in contact with the glass walls of the Thiele tube.
- Step **3** Move a small Bunsen flame back and forth along the lower part of the side-arm of the Thiele tube. An initial stream of bubbles will come from the open end of the capillary tube.
- Step **4** Continue heating until a rapid and continuous stream of bubbles comes from the capillary tube. Stop heating and record the temperature as soon as compound **A** is drawn up into the capillary tube.



(i) State what causes the i	initial stream of bubbles from the capillary tube i	n Step 3 . (1)
(ii) Suggest why the side-a	arm of the Thiele tube is heated, rather than poin	nt X on (1)
,	oil, and not water, is used in the Thiele tube when g temperature of compound A .	(1)
	ts obtained when using this apparatus on differe even when no mistakes are made in carrying out	-

(d) **One** of the compounds **A**, **B**, **C**, **D**, **E** or **F** was analysed.

To determine its empirical formula, 1.57 g of the compound was burned completely and the combustion products passed through the apparatus shown.

Solid M absorbed water and increased in mass by 1.28 g.

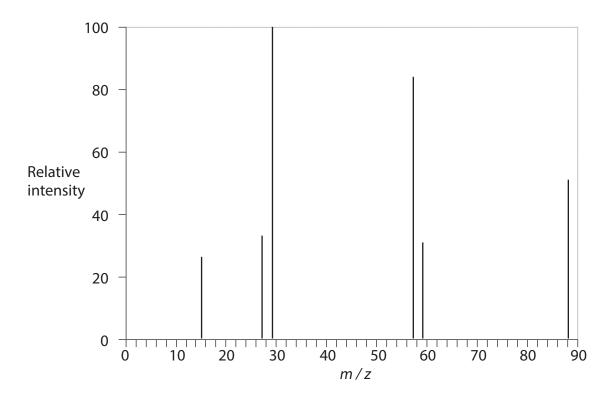
Solid N absorbed carbon dioxide and increased in mass by 3.14g.

(i) Identify, by name or formula, suitable substances for solids **M** and **N**.

- /	7	١.
- (/	1
- 1	_	/

Solid **N**

Solid **M**



(ii) Calculate the **empirical** formula of the compound, using the data given.

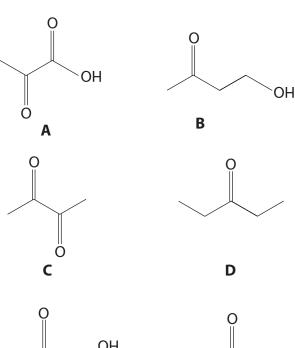
You **must** show your working.

(4)

(iii) The mass spectrum of the compound is shown.

Deduce the relative molecular mass of the compound, using the mass spectrum.

(1)


(iv) Deduce the molecular formula of the compound, using your answers to (d)(ii) and (d)(iii).

(1)

(v) Determine the identity of the compound, using your answer to (d)(iv) and the fragmentation pattern of the mass spectrum.

Justify your answer.

(2)

HO OH F

(Total for Question 3 = 22 marks)

TOTAL FOR PAPER = 50 MARKS

ements

	D	ڔ	
l	1		
•	+	_	
	+)	
	Φ	ڔ	
_	c	5	
ŀ	מ	3	
•	ì		
	לובטנזשם	5	
•	Č		
	ā	5	
	2	_	
	_	,	
	Ų	_	
	4	=	
Ī	מע	_	
Ī	J H	_	
Ī	שקן	_	
	J H		
Ī	שק		
Ī	94	2 -	
Ī	ad	2	
Ī	ad	2 -	
Ī	ad		

1 1 1 1 1 1 1 1 1 1								
1.0 Hydrogen 1.0 Hydrogen 1.0 Hydrogen 2.0 atomic (proton) number 1.2 Hydrogen 1.0 Hydrogen 2.1 atomic (proton) number 1.2 atomic (proton) number 1.2	0 (8)	(18) 4.0 He hetium 2	20.2 Ne	39.9 Ar argon 18	83.8 Kr krypton 36	Xe xenon 54	[222] Rn radon 86	rted
1.0 Hydrogen 1.0 Hydrogen 1.0 Hydrogen 2.0 atomic (proton) number 1.2 Hydrogen 1.0 Hydrogen 2.1 atomic (proton) number 1.2 atomic (proton) number 1.2	7	(17)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 I iodine 53	[210] At astatine 85	oeen repo
1.0 Hydrogen 1.0 Hydrogen 1.0 Hydrogen 2.0 atomic (proton) number 1.2 Hydrogen 1.0 Hydrogen 2.1 atomic (proton) number 1.2 atomic (proton) number 1.2	9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	116 have l
1.0 Hydrogen 1.0 Hydrogen 1.0 Hydrogen 2.0 atomic (proton) number 1.2 Hydrogen 1.0 Hydrogen 2.1 atomic (proton) number 1.2 atomic (proton) number 1.2	2	(15)	14.0 N nitrogen 7	31.0 P shosphorus	74.9 As arsenic 33	Sb antimony 51	209.0 Bi bismuth 83	nbers 112- Illy auther
1.0 Hydrogen 1.0 Hydrogen 1.0 Hydrogen 2.0 atomic (proton) number 1.2 Hydrogen 1.0 Hydrogen 2.1 atomic (proton) number 1.2 atomic (proton) number 1.2	4	(14)	12.0 C carbon 6		72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb lead 82	atomic nun but not fu
1.0 Hydrogen 1.0 Hydrogen 1.0 Hydrogen 2.0 atomic (proton) number 1.2 Hydrogen 1.0 Hydrogen 2.1 atomic (proton) number 1.2 atomic (proton) number 1.2	3	(13)	10.8 B boron 5	27.0 Al aluminium 13		114.8 In indium 49	204.4 Tl thallium 81	ents with
1.0 Hydrogen 1.0 9.0 atomic (proton) number 1.0 1.0 Hydrogen 1.0 24.3 Ag Ag 50.9 52.0 54.9 55.8 87.6 88.9 91.2 92.9 95.9 (98] 101.1 Sr		'		-	65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg mercury 80	Elem
1.0 Hydrogen 1.0 9.0 atomic (proton) number 1.0 1.0 Hydrogen 1.0 24.3 Ag Ag 50.9 52.0 54.9 55.8 87.6 88.9 91.2 92.9 95.9 (98] 101.1 Sr				(11)	63.5 Cu copper 29	Ag silver 47	197.0 Au gold 79	Rg centgenium
1.0 Hydrogen 1.0 9.0 atomic (proton) number 1.0 1.0 Hydrogen 1.0 24.3 Ag Ag 50.9 52.0 54.9 55.8 87.6 88.9 91.2 92.9 95.9 (98] 101.1 Sr				(10)	58.7 Ni nickel 28	106.4 Pd palladium	195.1 Pt platinum 78	Ds bs Jamstadtium n
1.0 Hydrogen 1.0 9.0 atomic (proton) number 1.0 1.0 Hydrogen 1.0 24.3 Ag Ag 50.9 52.0 54.9 55.8 87.6 88.9 91.2 92.9 95.9 (98] 101.1 Sr				(6)	58.9 Co cobalt 27	102.9 Rh rhodium 45	192.2 Ir iridium 77	Mt heitnerium 109
(2) 1. Telative atomic mass atomic symbol atomic sacrotium scandium titanium vanadium chromium manganese 20 21. 3		1.0 H hydrogen		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76	
(2) 9.0 Be atomic sym heryllium beryllium 20.2 87.6 87.6 88.9 88.9 80.9				(2)	54.9 Mn manganese 25		186.2 Re rhenium 75	
(2) 9.0 Be atomic sym heryllium beryllium 20.2 87.6 87.6 88.9 88.9 80.9			nass ool umber	(9)	52.0 Cr chromium r	95.9 Mo notybdenum 1	183.8 W tungsten 74	Sg seaborgium 106
(2) 9.0 Be beryttium 4 24.3 Mg magnestum 12 Ca Sc Calctum scandium 11t 20 Sr Y Strontium 137.3 138.9 1 Ba La* barium lanthanum ha 56 56 78 Ra Ac* radium actinium luth 88 88		Key	ve atomic r mic symt name (proton) m	(5)				[262] Db dubnium s
(2) 9.0 Be berytlium 4 24.3 Mg magnesium 12 Ca Sc calcium 20 21 87.6 88.9 Sr Y strontium 38 39 137.3 138.9 Ba La* barium lanthanum 56 Ra Ac* radium actinium 88 88			relativ ato i atomic	(4)		91.2 Zr zirconium 40		
(2) 9.0 Be beryttium 4 24.3 Mg magnestum 12 40.1 Ca calctum 20 87.6 Sr strontium 38 137.3 Ba barium 56 [226] Ra				(3)	Sc scandium 21		138.9 La* lanthanum 57	CARROLL CONTROL CONTRO
	7	(2)	9.0 Be beryllium 4	24.3 Mg nagnesium 12		87.6 Sr strontium 38		[226] Ra radium 88
	-	(1)			39.1 K potassium 19		132.9 Cs caesium 55	[223] Fr francium 87

* Lanthanide series

* Actinide series

	2	=	_		۲	lawrencium	103
173	ХР	ytterbiun	70	[254]	8 N	nobelium	102
169	Ę	thulium	69	[256]	ΡW	mendelevium	101
	늅	_			Fm	_	
	운			[254]	E	einsteinium	66
163	ð	dysprosium	99	[251]	ರ	californium	86
159	P	terbium	65	[245]	쓞	berkelium	46
	В	g		[247]	E	aurium	%
152	E	europium	63	[243]	Am	americium	95
150	Sm	samarium	62	[242]	Pu	plutonium	94
[147]	Pm	promethium	61	[237]	å	neptunium	93
144	P	neodymium	09	238	_	uranium	92
141	٦.	praseodymium	29	232 [231]	Pa	protactinium	91
140	e O	cerium	58	232	ᆮ	thorium	90