Please check the examination details below before entering your candidate information			
Candidate surname			Other names
Pearson Edexcel International Advanced Level	Centre I	Number	Candidate Number
Time 1 hour 45 minutes		aper eference	WCH15/01
Chemistry International Advanced UNIT 5: Transition Medical Organic Nitros	tals an	d	ry
You must have: Scientific calcu Data Booklet	lator,		Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The question labelled with an **asterisk** (*) is one where the quality of your written communication will be assessed you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on this question.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ₩ and then mark your new answer with a cross ⋈.

- 1 In which of the following pairs does the metal have different oxidation numbers?
 - \triangle A CrO₄²⁻ and Cr₂O₇²⁻
 - B CrO₄²⁻ and CrO₃Cl⁻
 - \square **C** V_2O_5 and VO_4^{3-}
 - \square **D** VO_2^+ and VO^{2+}

(Total for Question 1 = 1 mark)

2 This question is about the reaction

$$2Fe^{3+}(aq) + Ti(s) \rightarrow 2Fe^{2+}(aq) + Ti^{2+}(aq)$$

$$E_{\text{cell}}^{\Theta} = +2.40\,\text{V}$$

(a) The electrode potential for the Fe^{3+} / Fe^{2+} electrode system is +0.77 V.

What is the electrode potential for the Ti²⁺/Ti electrode system?

(1)

- **■ B** -1.63 V

(b) What metals should be used for the electrodes in the cell for this reaction?

(1)

	Metals used for the electrode			
	Fe ³⁺ / Fe ²⁺ electrode system Ti ²⁺ / Ti electrode system			
⊠ A	iron	titanium		
⊠ B	iron	platinum		
⊠ C	platinum	titanium		
⊠ D	platinum	platinum		

(c) The half-cell for the Fe³⁺/ Fe²⁺ electrode system is prepared by mixing **equal** volumes of solutions of iron(II) sulfate, FeSO₄, and iron(III) sulfate, Fe₂(SO₄)₃.

What concentrations of the **original** solutions are needed for the resulting mixture to be standard?

(1)

	Concentration of the original solution			
	FeSO ₄ Fe ₂ (SO ₄) ₃			
⊠ A	1 mol dm ⁻³	0.5 mol dm ⁻³		
⊠ B	1 mol dm ⁻³	1 mol dm ⁻³		
	2 mol dm ⁻³	1 mol dm ⁻³		
□ D	2 mol dm ⁻³	2 mol dm ⁻³		

(Total for Question 2 = 3 marks)

3 What is the electronic configuration of a chromium atom?

3d

A (Ar)

1	1	1	1	1

1

4s

- B (Ar)
- ↑↓

- **C** (Ar)
- 11 11 1
- 1

 $\uparrow\downarrow$

- ↑ ↑ ↑ ↑ **↑**
- (Total for Question 3 = 1 mark)

- 4 A ligand must be an
 - A electron-pair donor
 - **B** electron-pair donor and negatively charged

 - D electron-pair acceptor and negatively charged

(Total for Question 4 = 1 mark)

- **5** Diamminecopper(I) ions are **not** coloured because
 - A the d orbitals in copper(I) cannot be split
 - **B** the energy difference between the split d orbitals is outside the visible region of the spectrum

 - **D** copper(I) complexes are readily oxidised

(Total for Question 5 = 1 mark)

6 Copper(II) ions form a complex with 1,2-diaminoethane (symbol 'en') with the formula Cu(en)₃²⁺.

What type of ligand is 1,2-diaminoethane, and what is the coordination number of copper(II) in the complex?

		Type of ligand	Coordination number
X	Α	bidentate	3
X	В	bidentate	6
X	C	tridentate	3
X	D	tridentate	6

(Total for Question 6 = 1 mark)

7 Aqueous sodium hydroxide was added to aqueous iron(II) sulfate and the mixture allowed to stand.

What would be observed?

		Observations		
		Immediately after adding Sodium hydroxide After standing		
X	A	brown precipitate	no change	
X	В	green precipitate	no change	
X	C	brown precipitate	precipitate turns green	
X	D	green precipitate	precipitate turns brown	

(Total for Question 7 = 1 mark)

8 When aqueous ammonia is added to an aqueous solution of zinc sulfate, a white precipitate forms which dissolves in excess ammonia to give a colourless solution.

What types of reaction are occurring?

	Type of reaction		
Formation of white Formation of colourles solution			
	deprotonation	ligand exchange	
	deprotonation	deprotonation	
	ligand exchange	deprotonation	
	ligand exchange	ligand exchange	

(Total for Question 8 = 1 mark)

9 Benzene is sometimes represented by a Kekulé structure.

Kekulé structure of benzene

If this were the **only** structure of benzene, what would be the total number of isomers of dichlorobenzene?

A two

X

X

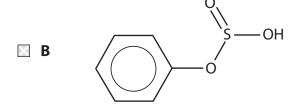
X

Α

В

C

D


- **B** three
- C four
- **D** five

(Total for Question 9 = 1 mark)

10 What is the product when benzene reacts with fuming sulfuric acid?

(Total for Question 10 = 1 mark)

11 Hydrogen bonds are formed when methylamine dissolves in water.

Which structure best represents a hydrogen bond between methylamine and water?

(Total for Question 11 = 1 mark)

- 12 Which type of compound cannot be a monomer in the formation of polyamides?
 - X **A** amides
 - X **B** amino acids
 - X **C** diacyl chlorides
 - X **D** diamines

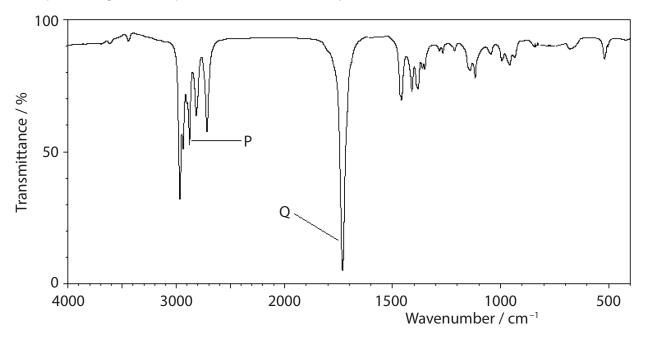
(Total for Question 12 = 1 mark)

13 Alanine is an amino acid.

(a) Which structure best represents alanine at high pH?

(1)

(b) Alanine is a crystalline solid at room temperature.

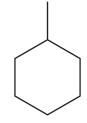

What are the main forces broken when alanine melts?

(1)

- A London forces
- **B** hydrogen bonds
- **C** covalent bonds
- **D** ionic bonds

(Total for Question 13 = 2 marks)

14 An aliphatic organic compound has the infrared spectrum shown.



What are the bond stretches responsible for the peaks ${\bf P}$ and ${\bf Q}$ in the spectrum?

		Р	Q
×	A	O—H carboxylic acid	C—O carboxylic acid
\times	В	O—H carboxylic acid	C—O aldehyde
X	C	C—H aldehyde	C—O carboxylic acid
\times	D	C—H aldehyde	C—O aldehyde

(Total for Question 14 = 1 mark)

15 How many peaks are there in the carbon-13 (13C) NMR spectrum of methylcyclohexane?

methylcyclohexane

- A one
- **B** three
- **C** five
- D seven

(Total for Question 15 = 1 mark)

16 In the high resolution proton NMR spectrum of propan-2-ol, CH₃CHOHCH₃ there are

- A one singlet, one doublet and a heptet
- **B** one singlet, two doublets and a heptet
- C two singlets and two triplets
- **D** three singlets and a quartet

(Total for Question 16 = 1 mark)

17 What is the minimum volume of oxygen gas, measured at room temperature and pressure, required for the complete combustion of 9.2 g of $C_3H_8O_3$ ($M_r = 92$)?

[Molar volume of gas at room temperature and pressure = $24.0 \, \text{dm}^3 \, \text{mol}^{-1}$]

- \triangle A 4.8 dm³
- **B** 8.4 dm³
- \square **C** 12.0 dm³
- \square **D** 16.8 dm³

(Total for Question 17 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

18 This question is about manganese compounds. Some data are given below.

	Electrode reaction	E [⊕] /V
1	$MnO_4^- + e^- \Rightarrow MnO_4^{2-}$	+0.56
2	$MnO_4^{2-} + 2H_2O + 2e^- \Rightarrow MnO_2 + 4OH^-$	+0.59
3	$Fe^{3+} + e^{-} \Rightarrow Fe^{2+}$	+0.77
4	$MnO_2 + 4H^+ + 2e^- \Rightarrow Mn^{2+} + 2H_2O$	+1.23
5	$MnO_4^- + 8H^+ + 5e^- \Rightarrow Mn^{2+} + 4H_2O$	+1.51
6	$MnO_4^- + 4H^+ + 3e^- \Rightarrow MnO_2 + 2H_2O$	+1.70
7	$MnO_4^{2-} + 4H^+ + 2e^- \Rightarrow MnO_2 + 2H_2O$	+2.26

(a) (i) Write the ionic equation for the disproportionation of manganate(VI) ions, MnO_4^{2-} , in **acidic** conditions, using relevant half-equations from the table. State symbols are not required.

(2)

(ii) Calculate E_{cell}^{Θ} for the disproportionation of manganate(VI) ions in **acidic** conditions, stating whether or not the reaction is thermodynamically feasible.

(2)

(iii) Using the standard electrode potentials in the table, assess the thermodynamic feasibility of preparing manganate(VI) by reacting manganate(VII) and manganese(IV) oxide in alkaline conditions.	(4)

(b) Steel is an alloy of iron and carbon. A group of students determined the iron content of a sample of steel wire by a titration method.

A known mass of the wire was dissolved in dilute sulfuric acid and the resulting solution made up to 250.0 cm³ with more dilute sulfuric acid and mixed thoroughly.

Fe +
$$H_2SO_4 \rightarrow FeSO_4 + H_2$$

25.0 cm³ samples of the resulting solution were titrated with 0.0195 mol dm⁻³ potassium manganate(VII) solution.

(i) State the colour change at the end-point of the titration.

(1)

(ii) One student used 1.53 g of the wire (weighed directly on the balance pan) and obtained a mean titre of 27.35 cm³.

Using half-equations 3 and 5 from the table, calculate the percentage of iron in the steel wire. Give your answer to **three** significant figures.

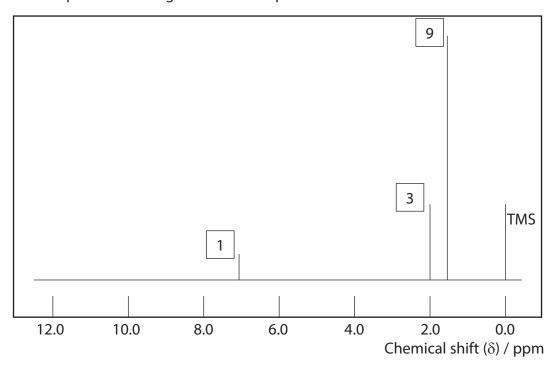
(5)

 (iii) A second student carried out the same experiment but used distilled water to make up the solution in the volumetric flask. A brown suspension formed during the titration. Explain how, if at all, the titre value would be affected by this student's error. 						
Explain now	, if at all, the title value	. Would be affected by th	(3)			
(c) The uncertaintion	es of the apparatus use	ed in the experiment in (b				
Apparatus	Value measured	Uncertainty on each reading	Percentage uncertainty on value measured / %			
Balance	1.53 g	±0.005 g	0.65			
Burette	27.35 cm ³	±0.05 cm ³				
Pipette	25.0 cm ³	±0.06 cm ³				
Volumetric flask	250.0 cm ³	±0.3 cm ³				
(i) Complete th	(i) Complete the table. (2)					
(ii) A third student obtained a value of 95.863% for the proportion of iron in the wire. State whether or not this student has given their answer to an appropriate number of significant figures. Justify your answer in terms of the total percentage						
uncertainty	uncertainty of the experiment. (2)					
		(Total for Qu	uestion 18 = 21 marks)			

- 19 This question is about the investigation of an organic compound X.X is a liquid at room temperature and pressure, which turns damp red litmus paper blue.
 - (a) (i) Name the functional group present in **X**.

(1)

(ii) When 0.493 g of **X** was vaporised, 157 cm³ of dry air was displaced, measured at 15°C and 103 000 Pa.


Calculate the molar mass of **X**, using the ideal gas equation. You **must** show your working.

(4)

(b) X reacted vigorously with ethanoyl chloride a white solid Y .	forming steamy fumes and	
(i) Identify the steamy fumes, by name or fo	ormula.	(1)
(ii) Suggest the functional group present in	Υ.	(1)
(iii) Analysis of Y showed that its composition 11.3% hydrogen; 12.2% nitrogen; 13.9% Determine the empirical formula of Y . Yo	ó oxygen.	(3)

(6)

*(c) A simplified **high** resolution proton NMR spectrum of **Y** is shown. The relative peak areas are given near each peak.

Deduce the structure of \mathbf{Y} , using the NMR spectrum and the other information in the question.

(d) Draw the structure of compound **X**.

(1)

(Total for Question 19 = 17 marks)

- **20** This question is about benzene and some related compounds.
 - (a) Some standard enthalpies of combustion are shown.

Compound	Structure	Standard enthalpy of combustion, $\Delta_c H^{\Theta}$ / kJ mol ⁻¹
cyclohexene		-3752
cyclohexa-1,4-diene		-3584
benzene		-3267

(i) Using the standard enthalpies of combustion of cyclohexene and cyclohexa-1,4-diene, calculate a value for the enthalpy of combustion of the theoretical compound 'cyclohexa-1,3,5-triene'.

(2)

cyclohexa-1,3,5-triene

(ii) Explain the difference between the enthalpy of combustion of 'cyclohexa-1,3,5-triene' calculated in (a)(i) and the enthalpy of combustion of benzene given in the table.	(3)
(b) Bromine reacts with cyclohexene to form 1,2-dibromocyclohexane, and with benzene to form bromobenzene.	
Compare and contrast these reactions, considering the type and mechanism of	
each reaction and the conditions required.	
each reaction and the conditions required. You are not required to draw the mechanisms of the reactions.	(4)
	(4)
	(4)
	(4)
	(4)
	(4)
	(4)
	(4)

(c)	Bromine	also	reacts	with	phenol.
-----	---------	------	--------	------	---------

(i)	Identify, by name or formula, the organic product when phenol reacts with
	excess bromine.

(1)

(ii) Explain why bromine reacts much faster with phenol than with benzene.

(2)

(Total for Question 20 = 12 marks)

TOTAL FOR SECTION B = 50 MARKS

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

21

Iron Chemistry

Iron is a typical transition metal. Due to the similar energies of the 3d and 4s electrons, iron forms compounds in a number of oxidation states. Iron(II) and iron(III) are the most common oxidation states, and iron(III) is the most stable.

Iron ions form many complexes, including that in haemoglobin which is responsible for oxygen transport in the blood of most vertebrates. The haemoglobin-iron complex with oxygen is responsible for the red colour of blood.

Iron(III) ions may be detected in solution by the addition of thioglycolic acid (HSCH₂COOH). All the water ligands of the iron(III) ion are replaced giving a complex with an intense red colour which can be detected in very low concentrations.

The complexes of iron(II) and iron(III) usually have a coordination number of six and are octahedral but the chloro complexes have a coordination number of four and are tetrahedral.

Iron and its compounds can act as catalysts. The element catalyses the Haber process, acting as a typical heterogeneous catalyst. However, the compounds and complexes of iron are usually homogeneous catalysts.

(a) Explain, in terms of electronic structure, why iron(III) compounds are more stable					
than iron(II) compounds.	2)				

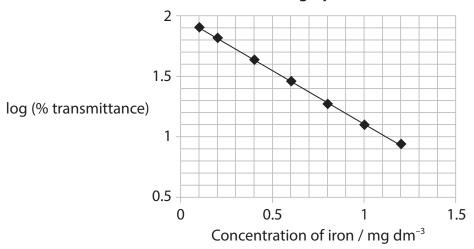
(b)	The third ionisation energy of iron is 2958 kJ mol				nol ⁻	·1					
	(:)	۱۸/۰۰:۴۰	ء حاله			£ 41	المناه بالم				

(i)	Write the equation for the third ionisation energy of iron.
	Include state symbols.

(1)

(ii) Explain how **stable** iron(III) ions can be formed from iron(II) ions in aqueous solution. Refer to the relevant energy changes of these ions only.

-	6		ъ		
Œ		,	-1	١	


c) Invertebrates use a copper complex, haemocyanin, to transport oxyge Blue oxyhaemocyanin gives invertebrate blood its characteristic colou	en. Ir.
Explain why oxyhaemocyanin and oxyhaemoglobin have different col	ours.

(d) The presence of iron in sodium carbonate can affect its properties; the higher the quality of the sodium carbonate, the lower the proportion of iron.

The proportion of iron in a laboratory grade anhydrous sodium carbonate was listed as less than 20 ppm by mass.

In an experiment to check this specification, 20 g of the sodium carbonate was dissolved in sulfuric acid, and thioglycolic acid added in excess to form the iron(III) thioglycolic acid complex, Fe(HSCH₂COOH)₃³⁺. The solution was made up to 500 cm³ in a volumetric flask and thoroughly mixed.

Colorimeter calibration graph

The transmittance of the resulting solution was determined using a colorimeter and found to be 39.8%.

(i) Using the calibration graph, determine whether or not the iron concentration in this sample of sodium carbonate meets the stated specification.

(4)

complex. Justify your answer.	(2)
e) lodide ions are oxidised to iodine by peroxodisulfate ions.	
$2I^{-}(aq) + S_2O_8^{2-}(aq) \rightarrow I_2(aq) + 2SO_4^{2-}(aq)$	
Iron(II) ions act as a homogeneous catalyst for this reaction. (i) State why the catalyst is described as 'homogeneous'.	
(i) State willy the eatalyst is described as nothing energias.	(1)
(ii) Write two equations to show how iron(II) ions catalyse this oxidation. State symbols are not required.	
state symbols are not required.	(2)
(iii) Suggest how iron(II) ions lower the activation energy of this reaction	
(iii) Suggest how iron(II) ions lower the activation energy of this reaction.	(1)

(f)	f) Give a possible reason why the chloro complexes of iron ions have a coordination number of four rather than six.				
	Trainiber of four faction than six.	(1)			
	(Total for Ouestion 21 = 20 ma	_			

TOTAL FOR SECTION C = 20 MARKS
TOTAL FOR PAPER = 90 MARKS

The Periodic Table of Elements

0 (8)	(18)	4.0	H
7			
9			
2			
4			
3			
	[1.0	Ξ,
		1.0	I
		0.1	=
		1.0	=
	,	1.0	I
		0.1	I
2		1.0	T

_ a. E		2	4.	_		6	_		Т	<u> </u>		e G		m	4.	<u>_</u>		2]	_	Ę.				
(18) 4.0 He	2	20.2	Re	neon	9	39.9	Ā	argon	2	83.8	궃	krypt	36	131.3	Xe	xenon	24	[222]	윤	radon	86		rted	
	(17)	19.0	L	fluorine	6	35.5	บ	chlorine	-	79.9	В	bromine	35	126.9	I	iodine	53	[210]	At	astatine	82		been repo	
	(16)	16.0	0	oxygen	∞	32.1	S	sulfur 16	٥	79.0	Se	selenium	34	127.6	<u>P</u>	tellurium	52	[506]	9	polonium	84		116 have	nticated
	(15)	14.0	z	nitrogen	7	31.0	۵	phosphorus 15	CT	74.9	As	arsenic	33	121.8	Sb	antimony	51	209.0	Bi	bismuth	83		nbers 112	but not fully authenticated
	(14)	12.0	U	carbon	9	28.1	Si	silicon	4	72.6	ge	germanium	32	118.7	Sn	tiu	20	207.2	Ъ	lead	82		atomic nui	but not f
	(13)	10.8	۵	poron	5	27.0	¥	aluminium	13	69.7	Ga	gallium	31	114.8	Г	indium	49	204.4	F	thallium	81		Elements with atomic numbers 112-116 have been reported	
	•							(12)	(7/)	65.4	Zu	zinc	30	112.4	Р	cadmium	48	200.6	Ę	mercury	80		Elen	
								(11)		63.5	D C	copper	29	107.9	Ag	silver	47	197.0	Αn	plog	79	[272]	Rg	roentgenium 111
								(10)	(0/)	58.7	ź	nickel	28	106.4	Pq	palladium	46	195.1	₹	platinum	78	[271]	Mt Ds Rg	darmstadtium 110
								ō,		58.9	ဝိ	cobalt	27	102.9	R	rhodium	45	192.2	ŀ	iridium	77	[368]	Mt	meitnerium 109
1.0 H	-							(8)	(0)	55.8	Fe	iron	76	101.1	Ru	ruthenium	4	190.2	õ	osmium	76			hassium 108
								(2)	3	54.9	Wn	manganese	25	[86]	2	technetium	43	186.2	Re	rhenium	75	[264]	絽	bohrium 107
		mass	loc		nmper			(4)	(0)	52.0	င်	vanadium chromium manganese	24	626	Wo	molybdenum technetium	42	183.8	>	tungsten	74	[366]	Sg	m seaborgium b
	Key	relative atomic mass	atomic symbol	name	atomic (proton) number			(5)	(c)	50.9	>	vanadium	23	92.9	Q	niobium	41	180.9	Та	tantalum	73		පි	dubniu 105
		relati	ato		atomic			9	(t)	47.9	ï	titanium	22	91.2	Zr	zirconium	40	178.5	Ŧ	hafnium	72	[261]	R	rutherfordium 104
								(2)	(c)	45.0	Sc	scandium	21	88.9	>	yttrium	39	138.9	La*	lanthanum	22	[227]		actinium 89
	(2)	9.0	Be	beryllium	4	24.3	Wg	magnesium	12	40.1	Ca	calcium	70	87.6	Sr	strontium	38	137.3	Ba	barium	26	[326]	Ra	radium 88
	(1)	6.9	<u>.</u>	lithium	3	23.0	N	sodium	7	39.1	¥	potassium	19	85.5	&	rubidium	37	132.9	ర	caesium	22	[223]	7	francium 87

Lanthanide series	Actinide series
*	*

	141	144	[147]	150	152	157	159	163	165	167	169	173	175
	٦.	P	Pm	Sm	En		Δ	ð	운	Ē	Ę	Д	Ľ
Ε	praseodymium	neodymium	promethium	samarium	europium	ğ	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
	59	9	61	62	63		65	99	- 67	89	69	70	71
	232 [231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
_	Pa	_	å	Pu	Am	E	쓞	ຽ	E	FB	ΡW	₈	ځ
Ε	protactinium	uranium	neptunium	plutonium	americium	arrium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	91	92	93	94	95	%	4	86	66	100	101	102	103