Mark Scheme (Provisional) ## Summer 2021 Pearson Edexcel International Advanced Level In Chemistry (WCH14) Paper 01: Rates, Equilibria and Further Organic Chemistry #### **Edexcel and BTEC Qualifications** Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus. #### Pearson: helping people progress, everywhere Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk Summer 2021 Question Paper Log Number P64626A Publications Code WCH14_01_2106_MS All the material in this publication is copyright © Pearson Education Ltd 2021 #### **General Marking Guidance** - All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last. - Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions. - Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie. - There is no ceiling on achievement. All marks on the mark scheme should be used appropriately. - All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. - Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited. - When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted. - Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response. #### **Using the Mark Scheme** Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit. The mark scheme gives examiners: - an idea of the types of response expected - how individual marks are to be awarded - the total mark for each question - examples of responses that should NOT receive credit. / means that the responses are alternatives and either answer should receive full credit. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer. Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question. Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context. #### **Quality of Written Communication** Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear - select and use a form and style of writing appropriate to purpose and to complex subject matter - organise information clearly and coherently, using specialist vocabulary when appropriate. Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others. ### Section A (multiple choice) | Question | Correct Answer | Mark | |----------|---|------| | Number | | | | 1 | The only correct answer is D (SO ₂) | 1 | | | A is incorrect as although it has four atoms, it has ten electrons | | | | B is incorrect as it has two atoms and two electrons | | | | C is incorrect as it has two atoms and only fourteen electrons | | | Question
Number | Correct Answer | Mark | |--------------------|--|------| | 2 | The only correct answer is A (– 198.8) | 1 | | | B is incorrect as number of moles of NH $_3$ and H $_2$ have not been considered | | | | \boldsymbol{C} is incorrect as number of moles of NH ₃ and H ₂ have not been considered and the expression to find the standard entropy of the system is the wrong way round | | | | D is incorrect as expression to find the standard entropy of the system is the wrong way round | | | Question | Correct Answer | Mark | |----------|---|------| | Number | | | | 3 | The only correct answer is C (enthalpy change of formation of Na₂SO₄) | 1 | | | A is incorrect as lattice energy is used to find the enthalpy change of solution | | | | B is incorrect as enthalpy change of hydration is used to find the enthalpy change of solution | | | | D is incorrect as enthalpy change of hydration is used to find the enthalpy change of solution | | | Question | Correct Answer | Mark | |----------|---|------| | Number | | | | 4 (a) | The only correct answer is C (0.1 mol dm ⁻³ HCl) | 1 | | | A is incorrect as final pH would be greater than 2 (weak acid) | | | | B is incorrect as final pH would be greater than 2 (weak acid) | | | | D is incorrect as final pH would be less than 1 (strong acid) | | | Question
Number | Correct Answer | Mark | |--------------------|---|------| | 4 (b) | The only correct answer is A (NH ₃) | 1 | | | B is incorrect as strong base so vertical section would begin at a higher pH / curve has a buffer region | | | | C is incorrect as strong base so vertical section would begin at a higher pH / curve has a buffer region | | | | D is incorrect as strong base so vertical section would begin at a higher pH / curve has a buffer region | | | Question
Number | Correct Answer | Mark | |--------------------|--|------| | 4 (c) | The only correct answer is C (3) | 1 | | | A is incorrect as only methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve' | | | | B is incorrect as only methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve' | | | | D is incorrect as methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve' | | | Question
Number | Correct Answer | Mark | |--------------------|--|------| | 5 | The only correct answer is \mathbf{D} (S _N 1; Two steps in mechanism) | 1 | | | A is incorrect as the halogenoalkane is tertiary so mechanism would be S_N1 which has two steps | | | | B is incorrect as although the mechanism has two steps the halogenoalkane is tertiary so mechanism would be $S_N 1$ | | | | C is incorrect as although the mechanism is S_N1 , it would have two steps | | | Question
Number | Correct Answer | Mark | |--------------------|--|------| | 6 | The only correct answer is D (Step 2 is the rate determining step, the overall order is 3) | 1 | | | A is incorrect as Step 3 is fast | | | | B is incorrect as Step 3 is fast | | | | C is incorrect as the overall order is 3 | | | Question
Number | Correct Answer | Mark | |--------------------|---|------| | 7 | The only correct answer is C (– gradient x R) | 1 | | | A is incorrect the Arrhenius equation has been rearranged incorrectly | | | | B is incorrect as the gradient of the graph is negative, so this expression would give a negative value for an activation energy | | | | D is incorrect as the gradient of the graph is negative, so this expression would give a negative value for an activation energy | | | Question
Number | Correct Answer | Mark | |--------------------|--|------| | 8 (a) | The only correct answer is C (3) | 1 | | | ОН | | | | A is incorrect as menthol has 3 chiral carbon atoms | | | | B is incorrect as menthol has 3 chiral carbon atoms | | | | D is incorrect as menthol has 3 chiral carbon atoms | | | Question
Number | Correct Answer | Mark | |--------------------|--|------| | 8 (b) | The only correct answer is B (Q) | 1 | | | A is incorrect as this carbon would produce a peak between 0 and 60 ppm | | | | C is incorrect as this carbon would produce a peak between 0 and 60 ppm | | | | D is incorrect as this carbon would produce a peak between 0 and 60 ppm | | | Question
Number | Correct Answer | Mark | |--------------------|--|------| | 8 (c) | The only correct answer is B (Two) | 1 | | | A is incorrect as the oxidation product is a ketone, so would not react with PCI ₅ | | | | C is incorrect as the oxidation product is a ketone, so would not react with Fehling's solution | | | | D is incorrect as the oxidation product is a ketone, so would not react with PCI₅ but would react with 2,4-dinitrophenylhydrazine | | | Question
Number | Correct Answer | Mark | |--------------------|---|------| | 9 (a) | The only correct answer is B | 1 | | | A is incorrect as the repeat unit has an extra oxygen | | | | C is incorrect as there is an extra carbon at the left-hand end of the repeat unit | | | | D is incorrect as the repeat unit has an extra oxygen and the structure is incorrect | | | Question
Number | Correct Answer | Mark | |--------------------|--|------| | 9 (b) | The only correct answer is B (hydrolysis) | 1 | | | A is incorrect as condensation is the reaction when the polymer forms | | | | C is incorrect as hydration is the addition of water to a C=C bond | | | | D is incorrect as hydrogen has not been added in a reduction reaction | | | Question
Number | Correct Answer | Mark | |--------------------|---|------| | 10 | The only correct answer is D (CH ₃ COCl) | 1 | | | A is incorrect as the reaction with ketone would NOT form an N-substituted amide | | | | B is incorrect as any reaction with the carboxylic acid would be too slow at RT | | | | C is incorrect as any reaction with the ester would be too slow at RT | | | Question
Number | Correct Answer | Mark | |--------------------|---|------| | 11(a) | The only correct answer is B (68 mm) | 1 | | | A is incorrect as it is a factor of 10 to large | | | | C is incorrect as it is the distance moved by the amino acids | | | | D is incorrect as it is the expression for R_f has been inverted | | | Question
Number | Correct Answer | Mark | |--------------------|--|------| | 11 (b) | The only correct answer is A (argon) | 1 | | | B is incorrect as the carrier gas must be inert | | | | C is incorrect as the carrier gas must be inert | | | | D is incorrect as the carrier gas must be inert | | | Question
Number | Correct Answer | Mark | |--------------------|--|------| | 12 | The only correct answer is C | 1 | | | $\begin{array}{c c} H & H \\ \hline H & C & C \\ \hline H & H \\ \hline \end{array}$ | | | | A is incorrect as the molar mass to 4 dp is 44.0265 | | | | B is incorrect as the molar mass to 4 dp is 44.0265 | | | | D is incorrect as the molar mass to 4 dp is 43.9898 | | | Question
Number | Correct Answer | Mark | |--------------------|--|------| | 13 | The only correct answer is D (8) | 1 | | | A is incorrect as the number of optical isomers = 2^n , where $n = number$ of chiral centres | | | | B is incorrect as the number of optical isomers = 2^n , where $n = number$ of chiral centres | | | | C is incorrect as the number of optical isomers = 2^n , where $n = n$ umber of chiral centres | | | Question
Number | Correct Answer | Mark | |--------------------|---|------| | 14 | The only correct answer is D (Structure D) | 1 | | | A is incorrect as it is identical to B and C | | | | B is incorrect as it is identical to A and C | | | | C is incorrect as it is identical to A and B | | (Total for Section A = 20 marks) #### Section B | Example of calculation 2 | |---| | | | (1) $-\Delta H \circ T = -25.7 \circ 298$ | | d correct sign (1) - 0.086242 kJ K ⁻¹ mol ⁻¹ / - 86.242 J K ⁻¹ mol ⁻¹ | | Ignore SF except 1 SF Correct answer with no working scores (2) | | Allow TE in M2 for use of Δ <i>H</i> ο <i>T</i> | | Comment | | Mark value first – if correct, with units and sign award 2 marks For units allow kJ K- mol-/ J K- mol- | | | | Question
Number | · | | · | | Additional Guidance | | |--------------------|---|-----|---|---|---------------------|--| | 15(b) | An explanation that makes reference to: | | | 3 | | | | | • ΔS _{system} must be positive | (1) | Allow 'ΔS _{system} is more positive' | | | | | | • $\Delta S_{\text{system}} > 86.24 \text{ J mol}^{-1}$ / answer to (a) | (1) | Allow $T\Delta S_{\text{system}}$ is greater in magnitude / more negative than ΔH | | | | | | • (as compound does dissolve) ΔS_{total} is > 0 / positive | (1) | ΔG is negative If answer to (a) is positive, then M1 and M2 will be ΔS_{system} could be positive or negative | | | | | | | | • ΔS_{system} smaller in magnitude than answer to (a) / $T\Delta S_{\text{system}}$ is greater than ΔH | | | | (Total for Question 15 = 5 marks) | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|---|--|------| | 16(a)(i) | • rate against concentration graph with axes labelled, inc. units (1) | Do not award M1 if axes are the other way around | 3 | | | • suitable scale chosen including the origin (1) | Points cover at least half available space in both directions | | | | • all points plotted correctly and straight line of best fit. (1) | Allow ±½ a square Allow if line does not extend to the origin Do not award M3 if scale is non-linear | | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|------------------------------|---|------| | 16(a)(ii) | justification of first order | (First order with respect to BrO₃⁻) as straight line (through origin / 0,0) | 1 | | | | Allow line with constant gradient | | | | | Allow rate is (directly) proportional to concentration | | | | | Allow use of data from graph to justify order | | | | | Do not award 'constant half life' | | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---------------------------------------|-----|-----------------------|------| | 16(b)(i) | deduce order wrt Br ⁻ ions | (1) | 1 st order | 2 | | | deduce order wrt H ⁺ ions | (1) | 2 nd order | | | | | | | | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|---------------------|----------------------------------|------| | 16(b)(ii) | rate equation shown | rate = $k[BrO_3^-][Br^-][H^+]^2$ | 1 | | | | Allow TE from (b)(i) | | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|--------------------------------|---|----------------------| | 16(b)(iii) | rearrangement of rate equation | Example of calculation
$k = \text{rate/[BrO}_3^-][Br^-][H^+]^2 / k = 1.52 \times 10^{-5} \text{ (0.062 x 0.21)}$ | x 0.4 ²) | | | • evaluation of <i>k</i> | 7.2965 x 10 ⁻³ ignore SF exce
M1 can be subsumed within | • | | | • units for <i>k</i> | dm ⁹ mol ⁻³ s ⁻¹ allow in any or
Correct answer with no wor | | | | | TE on (b)(ii) | | | | | Allow use of data from Run | 2 or Run 3 | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-----|---|------| | 16(c) | An answer that makes reference to: | | Allow bromate ((V)) ions for reactants | 3 | | | • reactants a d sorb onto palladium/catalyst surface | (1) | Allow 'bond/bind onto catalyst
surface'
Do not award a b sorb | | | | this weakens bonds in reactants | (1) | Ignore comments related to orientation | | | | products then desorb (from catalyst surface) | (1) | Allow 'products de-adsorb' /
products released (from catalyst
surface) | | | | | | If no other mark is awarded allow one for: reaction follows an alternative pathway / route / mechanism of lower activation energy | | (Total for Question 16 = 13 marks) | Question
Number | Acceptable Answers | | Addit | Additional Guidance | | | | |--------------------|--|-----|-------|-----------------------------------|------------------------|--------------------------------|---| | 17(a) | calculation of moles of C, H and O (1) | | е | element | moles | ratio | 2 | | | | | C | 2 | 66.7012 | 5.5601.3875 | | | | | | | | =5.56 | = 4 | | | | | | F | 1 | 11.101 | 11.101.3875 | | | | | | | | = 11.1 | = 8 | | | | | | C |) | 22.2016 | 1.387501.3875 | | | | | | | | =1.3875 | = 1 | | | | calculation of ratio and identify that ratio matches
molecular formula | (1) | Ratio | C ₄ H ₈ O m | natches C ₈ | H ₁₆ O ₂ | | | | OR | | | | | | | | | calculate molar mass of Y | (1) | Molar | r mass = | 144 (g mo | l ⁻¹) | | | | calculate % of each element | (1) | C=960 | o144x100 | 0 = 66.7% | | | | | | | H=16 | 0144x10 | 0 = 11.1% | | | | | | | O=32 | .c144x10 | 0 = 22.2% | | | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-----|--|------| | 17(b)(i) | 2,2-dimethylpropyl propanoate | (2) | Any name with '-propyl propanoate' scores 1 propyl-2,2-dimethyl propanoate scores 1 2,2-dimethylpropylethanoate scores 1 | 2 | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | | 17(b)(ii) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | Both structures required for mark Allow structures of propanoyl chloride / propanoic anhydride Allow any combination of correct skeletal, structural or displayed formulae. Ignore names even if incorrect Do not award connectivity to hydroxyl group via H atom | 1 | | Question | Acceptable Answers | Additional | Mark | |----------|---|--|------| | Number | | Guidance | | | 17(c)(i) | H_2 C | Labels B C and D can be used interchangeably as long as the three proton environments are identified correctly. Allow 3 methyl groups to be circled individually but with a single label / labels pointing to all 3 | | | Question
Number | Acceptable Answe | ers | | Additional Guidance | Mark | |--------------------|--------------------------------|--|--------------------|--|------| | 17(c)(ii) | Hydrogen
environment | Splitting pattern of peak | Relative peak area | 1 mark for each row. But If two or more rows are | w | | | (A) | (triplet) | (3) | incorrect then award whichever of these alternatives is higher | | | | С | quartet
singlet | 2 | Allow 2 marks for 3 correct splitting patterns. OR | | | | D | singlet | 9 | Allow 1 mark for 3 correct peak areas. | | | | Note : allow 'quadru
'singl | plet' as alternativ
e' as alternative f | • | OR
Allow 1 mark for correct row | | | | Do not award 'quadı | rat' | | marked consequentially on the labelling in 17(c)(i) | | (Total for Question 17 = 9 marks | | Acceptable Answers | | Additional Guidance | Mark | |--------|--|---|--|------| | Number | | | | | | 18 | This question assesses the studer and logically structured answer w reasoning. Marks are awarded for indicative is structured and shows lines of reasoning. | ith linkages and fully sustained content and for how the answer easoning. | Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with four indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). | | | | The following table shows how th indicative content. | e marks should be awarded for | If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 | | | | Number of indicative marking points seen in answer | Number of marks awarded for indicative marking points | marks (3 marks for indicative content and zero marks for linkages). | | | | 6 | 4 | iiinages). | | | | 5-4 | 3 | | | | | 3-2 | 2 | | | | | 1 | 1 | | | | | 0 | 0 | | | | | ' | <u> </u> | | | | | The following table shows how th structure and lines of reasoning | e marks should be awarded for Number of marks awarded for structure of answer and | | | | | Answer shows a coherent logica structure with linkages and fully sustained lines of reasoning | e marks should be awarded for Number of marks awarded for structure of answer and sustained lines of reasoning | | | | | Answer shows a coherent logica structure with linkages and fully | e marks should be awarded for Number of marks awarded for structure of answer and sustained lines of reasoning | | | | Indicati | ve Points | If neither IP1 or IP2 scored can get 1IP for Bonding | | |----------|--|---|--| | • | IP1 Bonding in sodium chloride is (almost) 100% ionic bonds | in sodium chloride is (almost) 100% ionic bonds and bonding in magnesium iodide has some covalent | | | | and as the theoretical and Born-Haber values are | character | | | | (very) similar | | | | _ | IP2 Bonding in magnesium iodide has some | | | | • | covalent character | | | | | and as theoretical and Born-Haber values are | | | | | (significantly) different | | | | • | IP3 Anion is (more) polarised in magnesium | | | | | iodide (than sodium chloride) | | | | _ | IP4 Magnesium ion has a greater charge density | ALLOW Magnesium ion has a greater | | | • | (than sodium ion), so greater polarising power | charge/smaller than sodium ion, so greater | | | | (management), as 8, cares because 8 because | polarising power | | | | | | | | • | IP5 lodide ion is larger (than chloride ion), so is more easily polarised | polarisation must be mentioned at least once in IP3, IP4 and IP5 | | | | more cashy polarised | Penalise use of 'atoms' instead of ions once only in | | | | | IP3 IP4 and IP5 | | | | | Penalise lack of comparative language once only in | | | • | IP6 Magnesium iodide has stronger bonding than | IP4, IP5 and IP6 Allow magnesium iodide has stronger bonding (than | | | J | sodium chloride because the charge on the | expected) due to polarisation / covalent character | | | | magnesium ion is twice as large (as the charge on | Allow both compounds have strong bonds as large | | | | the sodium ion) | amounts of energy needed to break up lattice / | | | | | released when lattice forms / needed to break | | | | | many strong bonds | | (Total for Question 18 = 6 marks) | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|----------|--|------| | 19(a)(i) | arrow from lone pair on carbon of cyanide ion to carbonyl carbonyl carbon of cyanide ion to carbonyl carbon of cyanide ion to carbonyl carbonyl carbon of cyanide ion to carbonyl carbon | (1) | | 4 | | | dipoles on carbon and oxygen in carbonyl bond and arrow from | | | | | | carbonyl bond to oxygen or just beyond (1 | 1) | | | | | structure of intermediate, including charge (1) |) | Penalise absence of lone pair only once in M1, M3 and M4 | | | | arrow from lone pair of oxygen in intermediate to hydrogen ion / F in HCN | ⊣
(1) | If HCN used to protonate in
step 2, dipole on HCN and
curly arrow to break HCN bond
are not required
Ignore product | | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|---|--|------| | 19(a)(ii) | The prediction is incorrect because | | 3 | | | ethanal is planar around the carbonyl carbon atom / planar around the CHO (1) | Accept planar at the site of the nucleophilic attack / planar about C=O | | | | | Do not award planar molecule / cation / intermediate | | | | (so in Step 1) the (carbonyl) carbon can be attacked from above or below (1) | Allow attack from any direction / either side | | | | hence both stereoisomers (of intermediate / product) will form in equal amounts or | | | | | so product mixture is racemic / rotates the plane of plane-
polarised light equally in both directions (1) | Ignore 'has no effect on the plane of plane-polarised light' | | | | | Ignore comments related to SN1 or SN2 | | | | | If no other mark scored allow 1 mark for idea that product will rotate plane of plane polarised light as it has a chiral centre / carbon | | | Question
Number | Acce | otable Answers | | Additional Guidance | Mark | |--------------------|-----------|---|----|--|------| | 19(a)(iii) | • | hydrolysis (** | 1) | | 4 | | | • | (dilute) hydrochloric acid / HCl((aq)) (| 1) | Allow any strong acid by name or formula Allow sodium hydroxide followed by any (strong) acid Ignore conc / concentrated | | | | • | heat (under reflux) / reflux (1 | 1) | Allow 'boil' for heat | | | | OR OR | CH ₃ CH(OH)CN + 2H ₂ O + H ⁺ \rightarrow CH ₃ CH(OH)COOH + NH ₄ ⁺ (CH ₃ CH(OH)CN + 2H ₂ O \rightarrow CH ₃ CH(OH)COOH + NH ₃ CH ₃ CH(OH)CN + 2H ₂ O + HCl \rightarrow CH ₃ CH(OH)COOH + NH ₄ Cl | | | | | | OR
and | $CH_3CH(OH)CN + H_2O + OH^- \rightarrow CH_3CH(OH)COO^- + NH_3$ $CH_3CH(OH)COO^- + H^{+-} \rightarrow CH_3CH(OH)COOH$ | | Allow NaOH for OH ⁻ Allow HCl for H ⁺ Ignore state symbols even if incorrect | | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|---|--|------| | 19(b) | • CH ₃ CH(OH)COOH + NaHCO ₃ \rightarrow CH ₃ CH(OH)COO ⁻ Na ⁺ + H ₂ O + CO ₂ OR H ⁺ + HCO ₃ ⁻ \rightarrow H ₂ O + CO ₂ | Allow CH ₃ CH(OH)COONa Allow H ₂ CO ₃ Ignore state symbols even if incorrect Do not award if covalent bond shown between O and Na | 1 | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|---|---|------| | 19(c)(i) | • (large concentration of) HCO ₃ ⁻ react with (extra) H ⁺ ions (1) | Allow ratio of [HCO ₃ -] to [H ₂ CO ₃] remains constant / ratio of [salt] to [acid] remains constant | 3 | | | equilibrium 1 moves to the RHS to keep concentration of H⁺ | | | | | ions constant / H ₂ CO ₃ forms to keep concentration of H ⁺ ions | Allow H ₃ O ⁺ for H ⁺ | | | | constant (1) | Allow equilibrium 1 moves to the RHS to remove excess H ⁺ ions / H ₂ CO ₃ forms to remove excess H ⁺ ions | | | | equilibrium 2 moves to RHS to form CO₂ (which can be excreted from the body) / H₂CO₃ then forms CO₂ (and water) | If no reference to H ⁺ and CO ₂ in M2
and M3 but direction of movement
of equilibria are correct in both
cases, allow 1 mark | | | • calculation of [H ⁺] / [H ₃ O ⁺] (1) | [H ⁺] = 10 ^{-7.41} / = 3.8905 x 10 ⁻⁸ | 3 | |--|---|--| | • K _a expression (1) | $K_a = [HCO_3^-][H^+]$ Allow $[H_3O^+]$ in K_a $[H_2CO_3]$ | | | | Do not award [H ₂ O] in K _a expression | | | rearrangement of K_a expression and calculation of [HCO₃⁻]: [H₂CO₃] (1) | [HCO ₃ ⁻]: [H ₂ CO ₃]
= $4.5 \times 10^{-7} \div 3.8905 \times 10^{-8} = 11.567 : 1 = 11.6$ (: 1)
Ignore SF except 1
Allow correct rounding of [H ⁺] to 3.9×10^{-8}
Allow 1: 0.086444 if it's clear that 1 relates to [HCO ₃ ⁻] | | | OR • calculation of pK_a (1) | $pK_a = -\log 4.5 \times 10^{-7} = 6.3468$ | | | Henderson Hasselbach expression (1) | $pH = pK_a + log([HCO_3^-] \circ [H_2CO_3])$ | | | rearrangement of K_a expression and calculation of [HCO₃⁻]: [H₂CO₃] | 7.41 - 6.3468 = $log([HCO_3^-] \circ [H_2CO_3])$
$[HCO_3^-] : [H_2CO_3] = 11.567 (: 1)$
Correct answer with no working scores (3) | | | (| K_a expression (1) rearrangement of K_a expression and calculation of [HCO₃⁻]: [H₂CO₃] (1) calculation of pK_a (1) Henderson Hasselbach expression (1) rearrangement of K_a expression and | • K_a expression (1) $K_a = [HCO_3^-][H^+] - [H_2CO_3]$ Do not award $[H_2O]$ in K_a expression $[HCO_3^-]: [H_2CO_3]$ Do not award $[H_2O]$ in K_a expression $[HCO_3^-]: [H_2CO_3] - [H_2CO_3$ | (Total for Question 19 = 18 marks) (Total for Section B = 51 marks) | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|--|------------------------|---|------| | 20(a)(i) | When the pressure is increased | | Marking points are independent | 3 | | | equilibrium moves to RHS and yield (of chlorine) |) increases (1) | Allow 'backward reaction favoured so yield (of chlorine) increases' | | | | • as fewer gas molecules on the RHS (5:4) | (1) | If numbers are given they must be correct | | | | • K _p remains constant | (1) | Allow 'change in pressure has no effect on value for K_p ' | | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|---|---|------| | 20(a)(ii) | When the temperature increases | Marking points are independent | 2 | | | equilibrium moves to LHS as (forward) reaction is exothermic (1) | Allow reaction moves in endothermic direction | | | | • K_p decreases and so yield (of chlorine) decreases (1) | | | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-----|---------------------|------| | 20(a)(iii) | When a catalyst is usedrate of backward and forward reactions increases by same amount | (1) | | 2 | | | • so K_p and yield (of chlorine) is unchanged | (1) | | | | Question
Number | Acceptable An | swers | | | Additional Guidance | Mark | |--------------------|------------------|-------------------------|-----------------------------|------------------------------|--------------------------|------| | 20(b)(i) | | | | | | 3 | | | Substance | Initial amount
/ mol | Equilibrium
amount / mol | Mole fraction at equilibrium | For mole fractions allow | | | | HCl | 0.850 | 0.350 | 0.26415 | e.g. 0.350 ○1.325 | | | | O ₂ | 0.600 | 0.475 | 0.35849 | allow correct rounding | | | | H ₂ O | 0 | 0.250 | 0.18868 | | | | | Cl ₂ | 0 | 0.250 | 0.189 | | | | | Total mo | oles at equilibriu | m = 1.325 | | | | | | | | | - | | | | | All values corre | ct scores (3) | | | | | | | M1 1 correct eq | uilibrium amour | nt | (1) | Ignore SF except 1 SF | | | | M2 other 2 cor | rect equilibrium | amounts | (1) | | | | | M3 Consequent | tial total moles a | nd mol fraction | (1) | | | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|---|--|------| | 20(b)(ii) | $K_p = p(H_2O)^2 p(Cl_2)^2 \circ p(HCl)^4 p(O_2)$ | Ignore parentheses Do not award square brackets | 1 | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |----------------------|---|-----|--|------| | Number
20(b)(iii) | | (1) | Example of calculation
allow TE from 20b(i) | 3 | | | • final value for K_p given to 2 or 3SF (1) | | $\frac{(0.28302)^2(0.28302)^2}{(0.39623)^4(0.53770)}$ = 0.48407 (Note = 0.48408 if no rounding) = 0.48 / 0.484 No TE for M2 for incorrect expression Check final answer if close, and allow if correct rounding used in working | | | | • correct units given (1) | | atm ⁻¹ allow TE for M3 from incorrect expression in (b)(ii) | | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-----|--|------| | 20(b)(iv) | | | | 2 | | | • recall of expression for ΔS_{total} | (1) | $\Delta S_{\text{total}} = R \ln K$ | | | | • calculation of ΔS _{total} | (1) | = 8.31 x - 0.726
= - 6.033 (J K ⁻¹ mol ⁻¹)
Allow TE / rounded value from
(iii)
No TE for M2 from incorrect
expression
Ignore SF except 1 SF
Ignore units even if incorrect | | | | | | NOTE $\Delta S_{\text{total}} = -6.0289$ if no rounding from (b)(iii) | | | | | | $\Delta S_{\text{total}} = -6.0993 \text{ if } 0.48 \text{ used}$ from b(iii) | | | Question
Number | Acceptable Answers | Additional guidance | Mark | |--------------------|--|--|------| | 20(c) | general shape of increase from left to right ALLOW straight line (1) | Allow horizontal sections allowed between phase changes for M1 | 3 | | | • two vertical stages for melting and boiling (1) | | | | | include the use of 273K for melting and 373K for boiling temperature either by labelling or position on x axis | M3 is independent of M2, providing a line is drawn | | | | | Entropy Entropy 373 k 273 k Temperature / K | | (Total for Question 20 = 19 marks) (Total for Section C = 19 marks) Total for Paper = 90 marks