Please check the examination detail	ls below	before ente	ring your candidate information
Candidate surname			Other names
Pearson Edexcel International Advanced Level	Centre	e Number	Candidate Number
Thursday 21 J	an	uar	y 2021
Afternoon (Time: 1 hour 20 minute	es)	Paper Re	eference WCH16/01
Chemistry			
International Advanced Unit 6: Practical Skills in		_	/ II
You must have: Scientific calculator			Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working in calculations and include units where appropriate.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions. Write your answers in the spaces provided.

- A student carries out some tests on four aqueous solutions **A**, **B**, **C** and **D**. One of the solutions is aqueous barium chloride, $BaCl_2(aq)$.
 - (a) The student is asked to add **A** to samples of **B**, **C** and **D** in separate test tubes, a **small** amount at a time, until there is no further change.

The container of solution **A** has a hazard label.

(i) Identify the hazard indicated by this label.

(1)

(ii) Describe how you would add small amounts of **A** until there is no further change. Name the apparatus you would use.

(2)

(b) (i)	B is a blue solution. When A is added to B , the mixture first turns green and then gradually turns yellow.	
	Give the formula of the cation in B .	(1)
(ii)	When A is added to C , vigorous effervescence occurs and the gas produced turns limewater cloudy.	
	Identify, by name or formula, the gas produced.	(1)
(iii)	Suggest the identity, by name or formula, of the anion in C .	(1)
(iv)) Identify A by name or formula. Justify your answer.	(2)
(v)	When A is added to D no change is seen. A small amount of this mixture is added to B and a white precipitate forms.	
	Suggest what can be deduced about solutions B and D . Solution B	(2)
	Solution D	

(vi) A concentrated solution of ammonia is added to **B**. Initially a pale blue precipitate forms. When more ammonia is added, the precipitate dissolves forming a dark blue solution **F**.

Identify, by name or formula, the pale blue precipitate and the species responsible for the dark blue colour in **F**.

(2)

(vii) A solution of the sodium salt of EDTA, Na₄EDTA, is added to a sample of solution **F**. The solution turns pale blue.

Write an equation for the reaction. State symbols are not required.

(2)

(Total for Question 1 = 14 marks)

BLANK PAGE

2 Students were told to determine the concentration of a solution of potassium chlorate(V), KClO₃. Two methods were used: precipitation and titration.

Method 1 – Precipitation

- Step 1 Bubble excess sulfur dioxide, SO₂, into 100 cm³ of the potassium chlorate(V) solution.
- Step 2 Boil the resulting mixture to remove excess SO₂ and then add silver nitrate solution until no more silver chloride precipitate forms.

Step 3 Filter, dry and weigh the precipitate.

The equation for the reaction in Step **1** is shown.

$$ClO_3^-(aq) + 3SO_2(g) + 3H_2O(l) \rightarrow Cl^-(aq) + 6H^+(aq) + 3SO_4^{2-}(aq)$$

(a) Identify the main hazard in Step 1, giving a safety precaution that will reduce the risk.

Assume that safety spectacles and a laboratory coat were used.

(b) The reaction in Step 2 produced 0.430 g of a white precipitate of silver chloride, AgCl.

Calculate the concentration of KCIO₃ in the solution, in mol dm⁻³, found using Method 1.

You **must** show your working.

(2)

(c) A student who used Method 1 obtained a value that was significantly larger than the actual concentration of the solution.

Explain **one** possible source of experimental error which might lead to this result.

(2)

Method 2 – Titration

- Step 1 Mix a sample of potassium chlorate(V) solution with an acidified solution containing iron(II) sulfate, FeSO₄
- Step 2 Remove the chloride ions produced in Step 1.
- Step **3** Determine the concentration of excess iron(II) ions by titrating the whole of the solution with a standard solution of potassium manganate(VII).

The equation for the reaction in Step 1 is shown.

$$ClO_3^-(aq) + 6Fe^{2+}(aq) + 6H^+(aq) \rightarrow Cl^-(aq) + 6Fe^{3+}(aq) + 3H_2O(l)$$

(d) Give the colour change observed in Step 1.

(1)

(e) Describe how to carry out the titration in Step 3. You should identify apparatus and any additional chemicals required.	
	(5)

(f) In Method 2, 50.0 cm³ of potassium chlorate(V) was mixed with 150 cm³ of 0.0750 mol dm⁻³ of iron(II) sulfate. The iron (II) sulfate was in excess.

The whole of this solution required 9.25 cm³ of 0.050 mol dm⁻³ of potassium manganate(VII) to completely react.

The equations for the reactions are

$$ClO_3^-(aq) + 6Fe^{2+}(aq) + 6H^+(aq) \rightarrow Cl^-(aq) + 6Fe^{3+}(aq) + 3H_2O(l)$$

$$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(l)$$

Calculate the concentration, in mol dm^{-3} , of the potassium chlorate(V) solution. You **must** show your working.

(6)

	(Total for Question 2 = 20 ma	
(g)	Explain the change, if any, to the value calculated in (f) if the chloride ions were not removed before the reaction in Step 3 of Method 2.	(2)
()	Final aire the a change of any to the analysis calculated in (f) if the ablasida inno years	

3 Azo dyes, such as Organol Brown, can be made from benzene, C₆H₆, using the reaction scheme shown.

Due to the toxicity of benzene, the first step is never carried out in a school laboratory.

organol brown

benzenediazonium chloride

(a) In the preparation of nitrobenzene, benzene is added slowly to a mixture of concentrated nitric and sulfuric acids.

The mixture is warmed at 55°C under reflux for 45 minutes. The reaction mixture is stirred continuously.

(i) State why a reflux condenser is needed when the mixture is warmed.

(1)

(ii) Draw a diagram of the apparatus used to warm under reflux in this experiment.

(3)

(iii) Suggest why the reaction mixture is stirred continuously.

(2)

(b)	b) The excess acid is removed from the reaction mixture. The layer containing nitrobenzene is separated and dried before being purified by distillation.								
	ldentify a suitable drying agent.	(1)							
(c)	Nitrobenzene is then reduced to phenylamine, C ₆ H ₅ NH ₂ .								
	Phenylamine reacts with nitrous acid at a temperature between 0°C and 10°C form a diazonium compound.	C to							
	(i) Nitrous acid is formed in the reaction mixture using sodium nitrite and hydrochloric acid.								
	State why nitrous acid is generated in the reaction mixture instead of bei obtained from a chemical supplier.								
		(1)							
	(ii) Explain why the temperature of the reaction between phenylamine and nitrous acid must be neither lower than 0°C nor higher than 10°C.								
	Tittous acid must be heither lower than o Chor higher than 10 C.	(2)							

(d) Reaction of the diazonium compound with an alkaline solution of naphthalene-1-ol produces the solid azo dye, Organol Brown. The solid is purified by recrystallisation.

Procedure

- Step **1** The impure Organol Brown is dissolved in a minimum volume of hot solvent.
- Step 2 The solution is filtered hot through a preheated funnel.
- Step 3 The solution is cooled and filtered using a Buchner funnel.
- Step 4 The solid is rinsed with a small amount of ice-cold solvent.
- Step 5 The solid is dried in a desiccator.
- (i) State why a **minimum** volume of hot solvent is used in Step 1.

(1)

(ii) Explain why a preheated funnel is used in Step 2.

(1)

(iii) Give a reason for each of the two filtrations in Steps 2 and 3.

(2)

(iv) Give a possible reason why it is preferable to dry the solid in a desiccator rather than in an oven in Step 5.

(1)

TOTAL FOR PAPER =	
(Total for Question 3 :	= 16 marks)
	(1)
State what you would observe if the sample was pure.	
(e) The melting temperature of the recrystallised Organol Brown is measured check its purity.	to

lawrencium

103

۲

[257]

lutetium

ב

	0 (8)	(18)	4.0	He	helium 2	20.2	Ne	neon 10	39.9	Ar	argon	18	83.8	Ķ	krypton	36	131.3	Xe	xenon	24	[222]	Rn	radon	86		ted	
	7				(17)	19.0	Ŀ	fluorine 9	35.5	ວ	chlorine	17	79.9	Br	bromine	35	126.9			53	[210]	Αt	astatine	85		een repor	
	9				(16)	16.0		0		S	sulfur	16	79.0	Se	selenium	34	127.6	<u>Б</u>	tellurium	25	[506]	S	polonium	84		116 have !	nticated
	2				(15)	14.0	z	nitrogen 7	31.0	۵	phosphorus	15	74.9	As	arsenic	33	121.8	Sb	antimony	51	209.0	E	bismuth	83		mbers 112	but not fully authenticated
	4				(14)	12.0		carbon		Si	silicon	14	72.6	Ge	germanium	32	118.7	Sn	ţį	20	207.2	Ъ	lead	82		atomic nui	but not f
	m				(13)	10.8	മ	boron 5	27.0	¥	aluminium	13	69.7	Ga	gallium	31	114.8	٦	indium	49	204.4	F	thallium	81		Elements with atomic numbers 112-116 have been reported	
ents												(12)	65.4	Zu	zinc	30	112.4	5	cadmium	48	200.6	Ηğ	mercury	80		Elem	
Elem												(11)	63.5	J	copper	29	107.9	Ag	silver	47	197.0	Αn	plog	79	[272]	Rg	roentgenium
Periodic Table of Elements												(10)	58.7	ï	nickel	28	106.4	Pd	palladium	46	195.1	꿉	platinum	78	[271]	Mt Ds Rg	darmstadtium
: Tabl												(6)	58.9	ပိ	cobalt	27	102.9		۶	45	192.2	<u>_</u>	iridium	77	[368]	₩	meitnerium
riodia			?: :	h vdrogen	1							(8)	55.8	Fe	iron	76	101.1	Ru	ruthenium	4	190.2	S	osmium	76	[277]		hassium
The Pe												(2)	54.9	۸n	manganese	25	[86]	ပ	technetium	43	186.2	Re	rhenium	75		Bh	bohrium
亡						relative atomic mass	atomic symbol	ımber				(9)	52.0	င်	chromium mangan	24	6.36	Wo	molybdenum technetium ruthenium	42	183.8	>	tungsten	74	[596]	Db Sg	seaborgium
					Key			name atomic (proton) number				(2)	50.9	>	vanadium	23	92.9	Q	niobium	4	180.9	Ā	tantalum	73	[597]	Op Op	dubnium
								atomic				(4)	47.9	F	titanium	22	91.2	Zr	zirconium	40	178.5	Ŧ	hafnium	72]		rutherfordium
												(3)	45.0	Sc	scandium	21	88.9	>	yttrium	39	138.9	۲a*	lanthanum	22	[227]	Ac*	actinium
	7				(2)	9.0	Be	beryllium 4	24.3	W	magnesium	12	40.1	Ca	calcinm	20	9.78	S	strontium	38	137.3	Ba	barium	56	[526]	Ra	radium
	-				(1)	6.9	ב	lithium 3	23.0	Ŋ	mnipos	11	39.1	¥	potassium	19	85.5	&	rubidium	37	132.9	ട	caesium	55	[223]	ᅩ	francium

^{*} Lanthanide series

11

110

109

108

107

106

105

104

88

88

87

^{*} Actinide series