| Please check the examination details below before entering your candidate information | | | | |--|--------------|--------------------|--| | Candidate surname | | Other names | | | Pearson Edexcel International Advanced Level | entre Number | Candidate Number | | | Tuesday 5 May 2020 | | | | | Afternoon (Time: 1 hour 20 minutes) |) Paper F | Reference WCH13/01 | | | Chemistry International Advanced Subsidiary/Advanced Level Unit 3: Practical Skills in Chemistry I | | | | | Candidates must have: Scientific o
Ruler | calculator | Total Marks | | ### **Instructions** - Use **black** ink or **black** ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. ### Information - The total mark for this paper is 50. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling. - There is a Periodic Table on the back cover of this paper. ### **Advice** - Read each question carefully before you start to answer it. - Show all your working in calculations and include units where appropriate. - Check your answers if you have time at the end. Turn over ▶ # Answer ALL the questions. | | · | | |----|--|-----| | | Write your answers in the spaces provided. | | | 1 | A white anhydrous crystalline solid A contains one cation and one anion. | | | | Solid A was heated in a test tube and the following observations were made. | | | | A brown gas was produced. | | | | A glowing splint relit when placed in the mouth of the test tube. | | | | A white solid remained in the test tube. | | | | (a) Identify, by name or formula, the two gases formed. | | | | | (2) | | | | | | | | | | | (b) Identify, by name or formula, the anion present in A . | | | | | (1) | | | | | | | (c) A flame test was carried out on A and a green colour was observed. | | | | Identify, by name or formula, the cation present in A . | (1) | | | | (1) | | | (d) Give the formula of solid A and the formula of the white solid formed on heating. | | | | (a) sive the remain of some remain of the write some formed of meating | (2) | | So | lid A | | | Wł | nite solid | | | | | | (e) About 5 cm³ of an aqueous solution of **A** was placed in each of two test tubes. Five drops of aqueous sodium hydroxide were added to one of the test tubes and five drops of dilute sulfuric acid were added to the other. In the table give the observations you would expect to make. (2) | Addition of sodium hydroxide solution | Addition of dilute sulfuric acid solution | |---------------------------------------|---| | | | | | | | | | | | | | | | (Total for Question 1 = 8 marks) 2 (a) A student was provided with aqueous solutions of four compounds: hydrochloric acid potassium carbonate silver nitrate sodium chloride Four bottles, labelled **B**, **C**, **D** and **E**, each contained one of the solutions. The student mixed pairs of the solutions to determine which was in each bottle. The results are shown. | Solutions
mixed | Observations | |-----------------------|--| | B and C | A white precipitate formed which did not dissolve on the addition of dilute nitric acid | | B and D | A precipitate formed which dissolved with effervescence on the addition of dilute nitric acid | | B and E | A white precipitate formed which did not dissolve on the addition of dilute nitric acid | | C and D | Effervescence with bubbles of a colourless gas given off | | C and E | No change | | D and E | No change | Using the observations in the table, deduce the identity of the compound in each bottle. - (b) To identify the cations in sodium chloride and potassium carbonate, a student carried out flame tests using the following method. - Step 1 A sample of solid sodium chloride was placed on a watch glass and a few drops of concentrated nitric acid were added. The solid and acid were mixed to form a paste. - Step **2** A length of copper wire was dipped into the paste. - Step **3** A Bunsen burner was set up with the air-hole closed. The copper wire containing the paste was placed into the Bunsen burner flame and the colour observed. - Step 4 The procedure was repeated using solid potassium carbonate. For each of the Steps 1, 2 and 3 give an improvement in the procedure explaining why the change is necessary. (6) | Step | Improvement | Explanation | |------|-------------|-------------| | | | | | 1 | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | 3 | | | | | | | (Total for Question 2 = 9 marks) - **3** This question is about three organic liquids, **F**, **G** and **H**. - (a) Tests were carried out on **F** and **G**. Each liquid contained one functional group. ## Test 1 A spatula measure of phosphorus(V) chloride, PCl₅, was added to about 1 cm³ of each liquid in separate test tubes. Any gas evolved was tested with damp blue litmus paper. | F | G | |---|---| | Steamy fumes were given off. Damp blue litmus paper turned red | Steamy fumes were given off. Damp blue litmus paper turned red | (i) Identify, by name or formula, the steamy fumes produced in Test 1. (1) ### Test 2 About 1 cm³ of sodium hydrogencarbonate solution was added to 1 cm³ of each liquid in separate test tubes. | F | G | |-------------|---| | No reaction | A colourless gas was given off that turned limewater cloudy | (ii) Identify, by name or formula, the gas produced in Test 2. | (iii) | Using the results from Tests 1 and 2 and the information at the start of the | |-------|--| | | guestion, name the functional groups present in F and G . | (2) | Functional group in F | Functional group in G | |------------------------------|------------------------------| | | | (iv) **F** and **G** both have a molar mass of 46 g mol⁻¹. Draw the **displayed** formula of **F** and **G**. (2) | F | G | |---|---| | | | | | | | | | | | | | | | | | | (v) State whether or not it is possible to distinguish between **F** and **G** using infrared spectra. Justify your answer. Wavenumber values are not required. (b) The organic liquid **H** is a pheromone thought to be involved in communication between rabbits. State the initial and final appearance of each mixture when the tests described were carried out on liquid ${\bf H}$. (4) | Tests | Observations | |---|--------------| | A few drops of H were shaken with bromine water. | | | In a test tube, a few drops of H were added to 1 cm ³ of Benedict's or Fehling's solution. The mixture was warmed in a water bath. | | | | | (Total for Question 3 = 11 marks) **4** The enthalpy change of neutralisation of hydrochloric acid may be determined using the apparatus shown. The equation for the reaction is $$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(I)$$ ### **Procedure** - Step 1 Place 25.0 cm³ of 1.00 mol dm⁻³ hydrochloric acid in a polystyrene cup. Record the temperature of the hydrochloric acid. - Step 2 Record the temperature of 30.0 cm³ of 1.00 mol dm⁻³ sodium hydroxide. - Step **3** Add the sodium hydroxide to the hydrochloric acid in the polystyrene cup. Stir the mixture and record the maximum temperature reached. - (a) (i) Give a reason why an excess of sodium hydroxide was used. (ii) The diagram shows part of the thermometer when the temperature had reached its maximum. Record the temperature in the table of results and then complete the table by giving the temperature change. (1) # **Results** | Measurement | Temperature
/°C | |---|--------------------| | Temperature of 25 cm ³ hydrochloric acid | 21.5 | | Temperature of 30 cm ³ sodium hydroxide | 21.5 | | Mean starting temperature | 21.5 | | Maximum temperature of the mixture | | | Temperature change | | (b) Calculate the enthalpy change of neutralisation of hydrochloric acid. Include a sign and units in your answer. [Assume: the density of both solutions and the mixture = 1.0 g cm⁻³ the specific heat capacity of the mixture = $4.2 \text{ J g}^{-1} {}^{\circ}\text{C}^{-1}$] (4) (c) The experiment was repeated using a glass beaker instead of a polystyrene cup. Explain how the value obtained for the enthalpy change of neutralisation would be different. (2) (Total for Question 4 = 8 marks) 5 A student carried out an experiment to identify the metal M in the hydrated carbonate $M_2CO_3.10H_2O$. A solution was made by dissolving 3.56 g of the hydrated metal carbonate in distilled water and making the volume up to 250.0 cm³ in a volumetric flask. 25.0 cm³ of this solution was placed in a conical flask and titrated with 0.100 mol dm⁻³ of hydrochloric acid. The equation for the reaction is $$M_2CO_3(aq) + 2HCl(aq) \rightarrow 2MCl(aq) + H_2O(l) + CO_2(g)$$ (a) Name a suitable piece of apparatus to measure the 25.0 cm³ of solution. (1) (b) Methyl orange indicator was used in this titration. Give the colour change in the conical flask at the end-point. (2) Colour change from _____ to ____ (c) The results of the titration are shown. | Number of titration | 1 | 2 | 3 | |---|-------|-------|-------| | Burette reading (final) / cm ³ | 25.25 | 26.00 | 24.85 | | Burette reading (initial) / cm ³ | 0.00 | 1.00 | 0.05 | | Titre / cm ³ | | | | (i) Complete the table. (ii) Using appropriate titrations, calculate the mean titre. (1) (iii) Using your answer to (c)(ii), calculate the number of moles of HCl in the mean titre. (1) (iv) Calculate the number of moles of M_2CO_3 in 25.0 cm³ of the solution. Hence calculate the number of moles of M_2CO_3 in the 250.0 cm³ volumetric flask. (2) (v) Using your answer in (c)(iv) and the mass of M₂CO₃.10H₂O in the 250 cm³ of solution, calculate the molar mass of M₂CO₃.10H₂O. (1) (vi) Use your answer to (c)(v) to identify metal M. (2) | (d) The titration was repeated without using an indicator. Describe how you would obtain large, dry crystals of the metal chloride, MCl, | oe how you would obtain large, dry crystals of the metal chloride, MCl, | | | | | | | |---|---|--|--|--|--|--|--| | from this titration solution. Diagrams are not required. | (3) | (Total for Question 5 = 14 | marks) | | | | | | | **TOTAL FOR PAPER = 50 MARKS** # **BLANK PAGE** # The Periodic Table of Elements | 0 (8) | (18) | 4.0 | 뫈 | helium | (| |-------|------|------|---------|----------|---| | 7 | | | | | į | | 9 | | | | | | | 2 | | | | | í | | 4 | | | | | | | m | , | 0: : |
= . | hydrogen | _ | | | | | | | / | | 2 | | | | | į | | 4.0
He helium 2 | 20.2 | e
N | neon
10 | 39.9 | ΑΓ | argon
18 | 83.8 | ᄌ | krypton | 36 | 131.3 | Xe | xenon
54 | [222] | R | radon
86 | | ted | | |-----------------------------|----------------------|---------------|--------------------------------|------|----|------------------|------|----|--------------|----|-------|--------------|-------------------------------------|-------|--------------|--------------------|-------|---|------------------------------------| | (17) | 19.0 | L | fluorine
9 | 35.5 | บ | chlorine
17 | 6.6/ | Br | bromine | 35 | 126.9 | Ι | iodine
53 | [210] | At | astatine
85 | | seen repor | | | (16) | 16.0 | 0 | oxygen
8 | 32.1 | S | sulfur
16 | 79.0 | Se | selenium | 34 | 127.6 | <u>a</u> | tellurium
52 | 1- | _o | polonium
84 | | 116 have I | ıticated | | (15) | 14.0 | Z | nitrogen
7 | 31.0 | ۵ | phosphorus
15 | 74.9 | As | arsenic | 33 | 121.8 | Sb | antimony
51 | 209.0 | Bi | bismuth
83 | | Elements with atomic numbers 112-116 have been reported | but not fully authenticated | | (14) | 12.0 | ပ | carbon
6 | 28.1 | | S | 72.6 | g | germanium | 32 | 118.7 | | £ | ا ـ ا | Ъ | lead
82 | | atomic nu | but not f | | (13) | 10.8 | മ | boron
5 | 27.0 | ¥ | aluminium
13 | 2.69 | Ga | gallium | 31 | 114.8 | ٦ | indium
49 | 204.4 | F | thallium
81 | | nents with | | | | | | | | | (12) | 65.4 | Zu | zinc | 30 | 112.4 | 5 | cadmium
48 | 200.6 | Ŧ | mercury
80 | | | | | | | | | | | (11) | 63.5 | J | copper | 29 | 107.9 | Ag | silver
47 | 197.0 | Ρ | gold
79 | [272] | Rg | roentgenium
111 | | | | | | | | (10) | 58.7 | Έ | nickel | 28 | 106.4 | Pd | palladium
46 | 195.1 | £ | platinum
78 | [271] | Ds | meitnerium darmstadtium
109 110 | | | | | | | | (6) | 6'85 | ပိ | cobalt | 27 | 102.9 | 各 | rhodium
45 | 192.2 | _ | iridium
77 | [368] | Mt | meitnerium
109 | | 1.0
H
hydrogen | | | | | | (8) | 55.8 | Fe | iron | 76 | 101.1 | Ru | ruthenium
44 | _ | Os | osmium
76 | [277] | ¥ | hassium
108 | | | | | | | | (2) | 54.9 | ۸ | ım manganese | 22 | [86] | ပ | m molybdenum technetium ru
47 43 | 186.2 | Re | rhenium
75 | [264] | Bh | | | | mass | ام | number | | | (9) | 52.0 | | chromit | 24 | 95.9 | Wo | molybdenum
47 | 183.8 | > | tungsten
74 | [596] | | seaborgium
106 | | Key | relative atomic mass | atomic symbol | name
atomic (proton) number | | | (2) | 50.9 | > | vanadium | 23 | 92.9 | 운 | niobiu
41 | 180.9 | Тa | tantalum
73 | [292] | Op | dubnium
105 | | | relat | atc | atomic | | | (4) | 47.9 | F | titanium | 77 | 91.2 | Zr | zirconium
40 | 178.5 | Ξ | | [261] | ¥ | rutherfordium
104 | | | | | | | | (3) | 45.0 | Sc | scandium | 21 | 88.9 | | yttrium
39 | 138.9 | La* | lanthanum h
57 | [227] | Ac* | actinium
89 | | (2) | 9.0 | Be | beryllium
4 | 24.3 | Mg | magnesium
12 | 40.1 | Ca | calcinm | 70 | 97.6 | Sr | strontium
38 | 137.3 | | _ | [326] | Ra | radium
88 | | (1) | 6.9 | <u>-</u> | lithium
3 | 23.0 | Ra | _ | 39.1 | ¥ | potassium | 19 | 85.5 | & | rubidium
37 | 132.9 | ပ | caesium
55 | [223] | ቷ | francium
87 | * Lanthanide series * Actinide series | | | | | _ | | _ | | |-------|----|--------------|----|-------|----------|--------------|-----| | 175 | Ľ | lutetium | 71 | [257] | ځ | lawrenciun | 103 | | 173 | χ | ytterbium | 70 | [254] | <u>گ</u> | nobelium | 102 | | 169 | Tm | thulium | 69 | [526] | ÞΨ | mendelevium | 101 | | 167 | ㅁ | erbium | 89 | [253] | Fm | fermium | 100 | | 165 | 유 | holmium | 67 | [254] | Es | einsteinium | 99 | | 163 | ۵ | dysprosium | 99 | [251] | უ | californium | 98 | | 159 | ТÞ | terbium | 65 | [245] | BK | berkelium | 97 | | 157 | РS | gadolinium | 64 | [247] | E | curium | 96 | | 152 | Eu | europium | 63 | [243] | Αm | americium | 95 | | 150 | Sm | samarium | 62 | [242] | Pu | plutonium | 94 | | [147] | Pm | promethium | 61 | [237] | δ | neptunium | 93 | | 144 | P | neodymium | 09 | 238 | - | uranium | 92 | | 141 | ዋ | praseodymium | 29 | [231] | Pa | protactinium | 91 | | 140 | g | cerium | 58 | 232 | £ | thorium | 90 |