Mark Scheme (Results) January 2020 Pearson International Advanced Level In Chemistry (WCH14) Paper 01 Rates, Equilibria and Further Organic Chemistry ### **Edexcel and BTEC Qualifications** Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus. ## Pearson: helping people progress, everywhere Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk January 2020 Publications Code WCH14_01_2001_MS All the material in this publication is copyright © Pearson Education Ltd 2020 ### **General Marking Guidance** - All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last. - Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions. - Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie. - There is no ceiling on achievement. All marks on the mark scheme should be used appropriately. - All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. - Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited. - When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted. - Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response. ## **Using the Mark Scheme** Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit. The mark scheme gives examiners: - an idea of the types of response expected - how individual marks are to be awarded - the total mark for each question - examples of responses that should NOT receive credit. / means that the responses are alternatives and either answer should receive full credit. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer. Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question. Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context. # Section A (multiple choice) | Question
Number | Answer | Mark | |--------------------|---|------| | 1(a) | The only correct answer is A (compound 1) | 1 | | | B is incorrect as aldehydes do not change the pH of water C is | | | | incorrect as ketones do not change the pH of water D is incorrect as amides do not change the pH of water | | | Question
Number | Answer | Mark | |--------------------|--|------| | 1(b) | The only correct answer is A (compound 1) | 1 | | | CI | | | | B is incorrect as aldehydes do not react with amines to form an N-substituted amide C is | | | | incorrect as ketones do not react with amines | | | | D is incorrect as amides do not react with amines | | | Question
Number | Answer | Mark | |--------------------|---|------| | 1 (c) | The only correct answer is C (compound 3) A is incorrect as it does not form iodoform B is incorrect as it does not form iodoform D is incorrect as it does not form iodoform | 1 | | Question
Number | Answer | Mark | |--------------------|---|------| | 2 | The only correct answer is C (ClCH₂C(CH₃)(Cl)COOH) | 1 | | | A is incorrect as compound 1 does not have a chiral carbon atom B is | | | | incorrect as compound 2 does not have a chiral carbon atom D is incorrect as compound 4 does not have a chiral carbon atom | | | Question | Answer | Mark | |----------|--|------| | Number | | | | 3 | The only correct answer is B (condensation) | 1 | | | | | | | A is incorrect as neither monomer has a carbon-carbon double bond C is | | | | incorrect as this is not a type ofpolymerisation | | | | D is incorrect as this is not a type of polymerisation | | | Question
Number | Answer | Mark | |--------------------|--|------| | 4 | The only correct answer is A (NaOOCCH=CHCOONa) | 1 | | | B is incorrect as only one of the -COOH groups has reacted | | | | C is incorrect as OH groups have added across the double bond | | | | D is incorrect as only one of the -COOH groups has reacted, and a -COOH group has been reduced | | | Question
Number | Answer | Mark | |--------------------|---|------| | 5 | The only correct answer is C | 1 | | | Diagram 3 | | | | $\begin{array}{c c} H & H & H & H & H & H & H & H & H & H $ | | | | A is incorrect as it shows a primary halogenoalkane forming a carbocation | | | | B is incorrect as it shows a primary halogenoalkane forming a carbocation and the electrons are moving to a | | | | lone pair in the second step D is incorrect as the electrons are moving to a lone pair in the first step | | | Question | Answer | Mark | |----------|---|------| | Number | | | | 6 | The only correct answer is D (phosphorus(V) chloride) | 1 | | | A is incorrect as chlorine will not react with ethanoic acid to form ethanoyl chloride B is incorrect as chloroethane will not react with ethanoic acid to form ethanoyl chloride C is incorrect as hydrogen chloride will not react with ethanoic acid to form ethanoyl chloride | | | Question
Number | Answer | Mark | |--------------------|---|------| | 7 | The only correct answer is B (Hg(I) \rightarrow Hg(g)) A is incorrect as the increase in disorder from (s) to (l) is less than that from (l) to (g) C is incorrect as there is a decrease in disorder as the gaseous ion is hydrated D is incorrect as there is no significant change in number of particles or state. | 1 | | Question
Number | Answer | Mark | |--------------------|--|------| | 8 | The only correct answer is D (W, X, Y and Z but there is more Y and Z than W and X) A is incorrect as this requires in a very large value for K_c B is incorrect as this will result in a very small value for K_c , < 1 C is incorrect as this will result in a small value for K_c , < 1 | 1 | | Question
Number | Answer | Mark | |--------------------|---|------| | 9 | The only correct answer is A (sum of enthalpies of hydration of the gaseous ions) | 1 | | | B is incorrect as it would be Li(s) + $\frac{1}{2}Cl_2(g) \rightarrow LiCl(s)$
C is incorrect as it would be LiCl(s) $\rightarrow Li^+(aq) + Cl^-(aq) D$ is incorrect as it would be $Li^+(g) + Cl^-(g) \rightarrow LiCl(s)$ | | | Question | Answer | Mark | |----------|---|------| | Number | | | | 10 | The only correct answer is D (require 20 cm ³ of 0.10 mol dm ⁻³ NaOH (aq) to react completely) | 1 | | | A is incorrect as one acid is strong, the other is weak | | | | B is incorrect as the solutions have different concentrations and ethanoic acid is a weak acid C is incorrect as the solutions have different concentrations and ethanoic acid is a weak acid | | | Question
Number | Answer | Mark | |--------------------|--|------| | 11 | The only correct answer is B (<i>HCOOH(aq)</i> and <i>KOH(aq)</i>) | 1 | | | A is incorrect as both the acid and base are strong C is incorrect as the acid is strong and the base is weak D is | | | | incorrect as both the acid and base areweak | | | Question | Answer | Mark | |----------|--|------| | Number | | | | 12 | The only correct answer is C (between 11 and 13) A is incorrect the solution is a strong base whose concentration is > 1×10^{-5} mol dm ⁻³ B is incorrect the solution is a strong base whose concentration is > 1×10^{-3} mol dm ⁻³ D is incorrect the solution is a strong base whose concentration is < 1×10^{-1} mol dm ⁻³ | 1 | | Question | Answer | Mark | | | |----------|---|------|--|--| | Number | | | | | | 13(a) | The only correct answer is C (flasks 1 and 4 only) | 1 | | | | | A is incorrect as flask 4 also contains only substances from the right-hand side of the equilibrium (HCl(aq) includes some water) | | | | | | B is incorrect as flask 1 also contains only substances from the right-hand side of the equilibrium D is incorrect as flasks 2 and 3 do not contain any ester | | | | | Question
Number | Answer | Mark | |--------------------|---|------| | 13(b) | The only correct answer is A (the equilibrium reaction is slow) | 1 | | | B is incorrect as rapid hydrolysis would affect the position of the equilibrium C is incorrect as the acid is neutralised D is incorrect as although a buffer may form it does not affect the position of the ester equilibrium | | | Question
Number | Answer | Mark | |--------------------|---|------| | 14 | The only correct answer is C | 1 | | | Rate [Q] | | | | A is incorrect as it shows a 0 order reaction B is | | | | incorrect as it shows a 0 order reaction | | | | D is incorrect as the concentration of Q remains constant | | | Question
Number | Answer | Mark | |--------------------|--|------| | 15(a) | The only correct answer is D (when the concentration of nitrogen monoxide doubles and the concentration of oxygen quadruples, the rate increases by a factor of 8) | 1 | | | A is not an incorrect statement as the overall order is 3
B is not an incorrect statement as the rate can be measured in units of mol dm ⁻³ s ⁻¹
C is not an incorrect statement as increasing the pressure does increase the rate of the reaction | | | Question
Number | Answer | Mark | |--------------------|---|------| | 15(b) | The only correct answer is D (dm ⁶ mol ⁻² s ⁻¹) | 1 | | | A is incorrect as these are the units for a fourth overall order rate equation B is incorrect as the exponent values are incorrect C is incorrect as the signs on the exponent values for mol and dm are incorrect. | | | Question
Number | Answer | Mark | |--------------------|---|------| | 15(c) | The only correct answer is A (1.31 \times 10 ⁻²) | 1 | | | B is incorrect as it is the value for $[NO]^2$
C is incorrect as the values for $[O_2]$ and rate are the wrong way round in the calculation, and the square root of the calculated value has not been determined
D is incorrect as the values for $[O_2]$ and rate are the wrong way round in the calculation | | (Total for Section A = 20 marks) # Section B | Question
Number | Answer | Additional Guidan | ce Mark | |--------------------|---|--|-------------| | 16(a)(i) | $ \begin{array}{c ccccc} & & & & & & & & & & & & & & & & & & &$ | (2) | 2 | | | All 4 peaks correctly matched scores both marks 2 or 3 peaks correctly matched scores 1 mark 0 or 1 peak correctly matched scores 0 marks | NOTE
Allow labels to/near
of correct group | r to carbon | | Question
Number | Answer | | Additional Guidance | Mark | |--------------------|--|-----|---|------| | 16(a)(ii) | 4.2 ppm quartet due to 3 hydrogen (atoms) on adjacent carbon | (1) | Allow 'due to adjacent CH₃' | 2 | | | 1.3 ppm triplet due to 2 hydrogen (atoms) on adjacent carbon | (1) | Allow 'due to adjacent CH ₂ ' If neither mark awarded can score 1 for correct reference to n+1 rule | | | | | | If no reference to splitting patterns then allow 1 for correctly identifying both sets of adjacent hydrogens | | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---------------|---|------| | 16(a)(iii) | | Allow skeletal or displayed formulae | 1 | | | C(CH₃)₃COCOOH | If more than 1 structure type given, both must be | | | | | correct. | | | Question
Number | Answer | Additional Guidance | | |--------------------|---|--|---| | 16(b)(i) | Origin/start line shown above bottom of paper (1) Straight line for solvent front added and labelled (1) | Ignore omission of initial spot, but if shown must be on baseline Allow 'distance travelled by solvent' Do not award wavy lines Do not award the top of the paper as the solvent front | 3 | | | Spot due to ethyl-3-oxobutanoate in position consistent with $R_{\rm f}$ between 0.4 and 0.5 (1) | solvent front | | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | 16(b)(ii) | M1 As only London forces form between them (so spot moves a shorter distance) / ethyl-3-oxobutanoate is polar, hexane isnon-polar / (1) | Allow reverse arguments Do
not award M1 if reference to
hydrogen bonds | 2 | | | M2 Weaker interaction between hexane and ethyl-3-oxobutanoate / ethyl-3-oxobutanoate is less soluble in hexane (1) | Allow solvent / mobile phase
for hexane
Allow ethyl-3-oxobutanoate
does not dissolve in hexane | | (Total for Question 16 = 10 marks) | Question
Number | Answer | Additional Guidance | Mark | | | | |--------------------|--|---|--|--|--|---| | 17 | This question assesses the student's logically structured answer with linkareasoning. Marks are awarded for indicative constructured and shows lines of reason. The following table shows how the mindicative content. | should be applied: The mark for indicative content should be added to the markfor lines of reasoning. Forexample, a response with four indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure | | should be applied: The mark for indicative content should be added to the markfor lines of reasoning. For example, a response with four indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure | | 6 | | | | umber of marks awarded or indicative marking points 4 3 2 1 0 narks should be awarded for | and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and zero marks for linkages). | | | | | | Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout Answer is partially structured with some linkages and lines of reasoning | | In general it would be expected that 5 or 6 indicative points would score 2 reasoning marks, and 3 or 4 indicative points would score 1 reasoning mark. A total of 2, 1 or 0 indicative points would score 0 marks for reasoning. | | | | | | Answer has no linkages between points and is unstructured | 0 | | | | | | Indicative Points Similarities: | Ignore Iodoform reaction | |--|---| | IP1 Both react with 2,4-dinitrophenylhydrazine to form a yellow / orange / red precipitate | | | IP2 Both can be reduced by LiAlH ₄ / Lithium tetrahydrido aluminate / lithium aluminium hydride (in dry ether) | Accept Both can be reduced by NaBH ₄ If name given it must be correct | | Differences: IP3 but propanal forms a primary alcohol, propanone forms a secondary alcohol | Accept propanal forms propan- 1-
ol / CH ₃ CH ₂ CH ₂ OH and
propanone forms propan-2-ol /
CH ₃ CHOHCH ₃ | | IP4 Propanal will react with acidified potassium dichromate ((VI)) | | | but propanone will not react | Accept any named suitable oxidising agent eg. Fehling's / Benedict's solution/ Tollens' reagent / acidified potassium manganate((VII)) | | IP5 Equation for oxidation reaction | CH₃CH₂CHO + [O] → CH₃CH₂COOH If reduction of metal shown in oxidation equation it must be correct. | | IP6 Observation for named oxidising agent | | | Eg. orange to green (with acidified dichromate(VI)) | Fehling's / Benedict's : blue solution to red / orange ppt | | Comment – Ignore equations involving 2,4 DNP | Tollen's : silver mirror / ppt Allow grey ppt. | | | Additional incorrect equations for organic reduction loses one reasoning mark | (Total for Question 17 = 6 marks) | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-----|-----------------------------------|------| | 18(a) (i) | Calculation of 1/Tvalue 1.19 x 10⁻³ and Calculation lnk value | (1) | Both values must be given to 3sf. | 1 | | | and | (1) | | | | Acceptable Answers | Additional Guidance | Mark | |---|--|---| | M1 Axes correct way roundand labelled (1) | If numbers used on x-axis are without the power of ten allow x 10 ³ or 10 ⁻³ on the axis. Do not award M1 if units given for ln k on y-axis Do not award small "t" for "T" | 3 | | M2 Suitable scale with points covering at least half the axes in both directions (1) | Ignore y-axis with increasing negative values going upwards. | | | | COMMENT: If wrong columns plotted allow M2 only | | | M3 All points plotted (± ½ square), and straight line of best fit (1) | | | | | M1 Axes correct way roundand labelled (1) M2 Suitable scale with points covering at least half the axes in both directions (1) M3 All points plotted (± ½ square), and | M1 Axes correct way roundand labelled (1) If numbers used on x-axis are without the power of ten allow x 10³ or 10⁻³ on the axis. Do not award M1 if units given for ln k on y-axis Do not award small "t" for "T" M2 Suitable scale with points covering at least half the axes in both directions (1) If numbers used on x-axis are without the power of ten allow x 10³ or 10⁻³ on the axis. Do not award M1 if units given for ln k on y-axis Do not award small "t" for "T" Ignore y-axis with increasing negative values going upwards. COMMENT: If wrong columns plotted allow M2 only M3 All points plotted (± ½ square), and | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-----|---|------| | 18(a)(iii) | M1 Calculation of gradient with sign, in the range -34200 to -31200 | (1) | Do not award positive gradient. Allow gradient as a fraction | 3 | | | M2 Units of gradient is K M3 Calculation of activation energy | (1) | Example of calculation: (32700 x 8.31) / 1000 = (+)272 (kJ mol ⁻¹) Allow any answer between (+)259 and 284 Allow answer in J mol ⁻¹ if units given Allow TE from M1 if Ea is positive. Ignore SF other than 1SF Do not award negative Ea | | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-------------------|---|------| | 18(b) | The value is large, Either as a lot of energy is required so the reactant is kinetically stable / rate of reaction is low (1) Or as a lot of energy is required to break the strong C-C bonds in cyclopropane Or as a lot of energy is required to break the strong C-C bonds in | (1)
(1)
(1) | Comment – alternative approach Allow TE from (a)(iii) for a small positive value (less than 50); the value issmall so not much energy is required (1) the bonds incyclopropane are strained/ C-C-C bond angle is 60° rather than 109.5° (1) | 2 | | | cyclopropane so the reaction requires very high temperatures | (1) | Ignore any references to catalysts | | | Question
Number | · | | · | | Additional Guidance | Mark | |--------------------|--|-----|---|---|---------------------|------| | 18(c) | As <i>T</i> increases <i>k</i> increases (rapidly) | (1) | Ignore any reference to equilibrium constant | 3 | | | | | As the (average) energy of molecules / particles increases(1) | | | | | | | | So a greater proportion of / more collisions have energy ≥ activation energy / | (1) | Ignore so a greater proportion of collisions are successful | | | | (Total for Question 18 = 12 marks) | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-----|--|------| | 19(a)(i) | M1 Expression for ΔS_{system} | (1) | Example of calculation:
(186.2 + 239.7) – (16.5 + (4 x 186.8)) | 5 | | | M2 Value for ΔS_{system} | (1) | —337.8 (J K ⁻¹ mol ⁻¹) | | | | M3 Expression for $\Delta S_{\text{surroundings}}$ | (1) | $\Delta S_{\text{surroundings}} = -\underline{\Delta H} = -(-631.3 \times 10^3) / 298$ T | | | | M4 Value for $\Delta S_{\text{surroundings}}$ | (1) | = (+) 2118.5 (J K ⁻¹ mol ⁻¹) / (+)2.1185 (kJ K ⁻¹ mol ⁻¹) | | | | M5 Value for ΔS_{total} to 2 or 3 SF andunits (1) | | (= 2118.5 + (- 337.8)
= (+)1780.7 | | | | | | = (+)1780 / (+)1800 J K ⁻¹ mol ⁻¹
(+)1.78 / (+)1.80 kJ K ⁻¹ mol ⁻¹
Allow TE at each stage
Correct answer with no working scores 5 | | | | | | (+)2340 J K ⁻¹ mol ⁻¹ scores 4 (1 x 186.8)
(+) 2460 J K ⁻¹ mol ⁻¹ scores 3 (react-prod) | | | Question
Number | Acceptable Answers | Additional Guidance | Mark | | |--------------------|---|--|------|--| | 19(a)(ii) | An answer that makes reference to: | Ignore references to
Le Chatelier for M1 and M2. | 3 | | | | • A higher temperature would result in a less positive /lower $\Delta S_{surroundings}(\Delta S_{system})$ is relatively unaffected by temperature) (1) | Allow A highertemperature would result in a an insignificant change in $\Delta S_{\text{surroundings}}$ as its value is so large (ΔS_{system} is relatively unaffected by temperature) | | | | | So ΔS_{total} is less positive / lower, which makes reaction less feasible /reduces yield (1) COMMENT: For M1 and M2 allow correct calculation of ΔS_{total} (at 973K) >0 to show that the reaction is feasible. | So ΔS_{total} is unchanged (in sign), which meansfeasibility of reaction is unchanged Ignore less easily / readily | | | | | • but high temperature is used to increase rate (1) | Standalone mark | | | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-----|---|------| | 19(a)(iii) | Recall of expression for <i>K</i> | (1) | Example of calculation: $\Delta S_{\text{total}} = R \ln K$ | 2 | | | Rearrangement of expression and | | | | | | | | In $K = \Delta S_{\text{total}}/R = 1780.7 / 8.31$ | | | | calculation of ln <i>K</i> and value for <i>K</i> | (1) | = 214.1998 | | | | Allow TE from (a)(i) but no TE if incorrect expression given in M1. | | 1.15440 x 10 ⁹³ | | | | | | Allow any answer between 1.06 x 10 ⁹³ | | | | | | and 1.18 x 10 ⁹⁴ | | | | | | Ignore any units; Ignore SF | | | | | | Correct answer with no working scores 2 | | | Question
Number | Acceptable Answers | Additional Guidance | Mark | | |--------------------|---|--|---|--| | 19(b)(i) | Arrows upwards for first and second ionisation energies for calciu correct labels, B and Cin boxes | Only penalise lack of arrow once in M1 and M2. | 3 | | | | Downward arrows for electron affinity and lattice enthalpy and correct labels E x 2 and Fin boxes | (1) | | | | | Correct species including state symbols on horizontal lines $ \begin{array}{c} Ca^{2^+}(g)+2l(g)+(2e^-) \\ \hline E & x2 \\ \hline Ca^+(g)+2l(g)+(e^-) \\ \hline Ca(g)+2l(g) \\ \hline D & x2 \\ \hline Ca(g)+l_2(g) \\ \hline Ca(s)+l_2(g) \\ \hline \end{array} $ Enthalpy of formation of calcium iodide | (1) | If electrons are included, they must be correct but allow e for e | | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|----------------------|-----|--|------| | 19(b)(ii) | Correct expression (| (1) | Example of calculation:
[(178.2 + 590 + 1145+ (106.8 x 2) – (295.4 x 2)] – 2074 | 2 | | | Evaluation (* | 1) | = —538 (kJ mol ⁻¹) | | | | | | If E x 2 penalised in b(i), allow use of 1 x 295.4 as TE. In this case only -242.6(kJ mol $^{-1}$) scores 2 | | | | | | However, if E x 2 not penalised in b(i) then penalise failure to multiply by 2 once only in b(ii) | | | | | | -349.4(kJ mol ⁻¹) scores 1 (misses both x 2) -242.6(kJ mol ⁻¹) scores 1 (misses 2 x 295.4) -644.8 (kJ mol ⁻¹) scores 1 (misses 2 x 106.8) +538 (kJ mol ⁻¹) scores 1 (expression wrong way round) ignore SF except 1 SF | | | Question
Number | Acceptable Answers | | Additional Guidance | Marks | |--------------------|--|-----|---|-------| | 19(b)(iii) | Bonding in calcium fluoride is (virtually) 100% ionic (1) |) | | 4 | | | Whereas bonding in calcium iodide has a degree of covalency / somecovalent character (1) |) | Allow lodide / l ⁻ has some covalent character | | | | Then any 2 from these 3 marking points | | | | | | The calcium ion is polarising (1 | 1) | Penalise the use of fluorine and | | | | The fluoride (ion) is small so not easily polarised / electron cloud not soeasily distorted | 1) | iodine once only | | | | the iodide (ion) is larger and so is easily polarised / electron cloud is easily distorted (| (1) | | | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|--|---|------| | 19(c) | M1 More exothermic / more negative / greater in magnitude (1) | Ignore larger / less / higher
Allow 'more energy released' | 3 | | | M2 As (the atomic radius of) chlorine is smaller / less shielding between nucleus and electron (to be gained) / chlorine has fewer shells (of electrons) (1) | Do not award chloride for chlorine | | | | M3 Stronger attraction (between nucleus and electron to be gained) (1) | Allow chlorine is more electronegative than iodine | | | | | Allow reverse argumentfor M2 and M3 | | (Total for Question 19 = 22 marks) (Total for Section B = 50 marks) # Section C | Question Number | Acceptable Answers | Additional Guidance | Mark | |-----------------|--|--|------| | 20(a)(i) | 3- methylbutyl ethanoate or 3-methyl-1-butyl ethanoate | Allow butanyl for butyl Do not award butanoyl Allow methly formethyl | 1 | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|------------------------------------|-----|---|------| | 20(a)(ii) | • Calculation of M_r of ester | (1) | Example of calculation M_r of ester = 130 | 3 | | | Calculation of mass of ester | (1) | Mass of ester = $6.06 \times 10^{-3} \times 130$
= 0.7878 (g)
TE on incorrect M_r of ester | | | | Calculation of percentage of ester | (1) | % of ester = (0.7878/1.07) x 100 =73.6 % Allow 73.8% as M2 rounded to 0.79 Correct answer with no working scores 3 marks. Allow TE from M2 Ignore SF except 1SF | | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-----|---|------| | 20(a)(iii) | Calculation of mol of excess sodium hydroxide | (1) | Example of calculation
Excess amount of sodium hydroxide =
(0.025 x 0.980) – 6.06 x 10 ⁻³ = 0.01844
(mol) | 3 | | | Calculation of concentration of excess sodium hydroxide | (1) | Concentration of excess sodium hydroxide = 0.01844/0.025 = 0.7376 (mol dm ⁻³) allow TE from M1 if some attempt at subtraction | | | | Calculation of pH to at least 1 dp | (1) | pH = 14 - $(-log(0.7376))$ = 13.8678 = 13.9
allow TE from M2 if pH is greater than7
and less than or equal to 14
Allow 1 mark for pH = 13.99 (based on 0.98 mol dm ⁻³ NaOH) | | | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|---|---|------| | 20(a)(iv) | student C is correct as the titration is between
a strong acid and a strong base (1) | Allow A and B are incorrect | 2 | | | Both methyl orange and phenolphthalein
change colour at equivalence / vertical section
of the graph (1) | Allow both pK_{IN} values / range of indicators are within vertical section (of thegraph) If values are quoted they must be correct PP = 9.3; MO = 3.7 | | | Question
Number | Acceptable Answer | rs . | Additional Guidance | Mark | |--------------------|----------------------|------|--|------| | 20(a)(v) | Add (excess) HCl(aq) | (1) | Allow 'add a strong acid' Allow name or formula of any strong acid but if both are given, both must be correct Ignore references to dilute / conc / heat / reflux | 1 | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-----|--|------| | 20(b)(i) | M1 Calculates moles of CH₃COONa/ NaOH (| 1) | Example of calculation
Moles of NaOH = moles of CH ₃ COONa = $(30/1000) \times 0.142 = 4.26 \times 10^{-3} \text{ (mol)}$ | 5 | | | M2 Calculates moles ofexcess CH₃COOH (| (1) | Moles of excess $CH_3COOH = [(50/1000) \times 0.15] - 4.26 \times 10^{-3} = 3.24 \times 10^{-3} (mol)$ | | | | M3 Calculates / shows ratio of [CH₃COOH] to [CH₃COONa] OR ratio of moles CH₃COOH to CH₃COONa (| (1) | [CH ₃ COOH] = 3.24 x 10 ⁻³ / (80/1000) = 0.0405 (mol dm ⁻³)
[CH ₃ COONa] = 4.26 x 10 ⁻³ / (80/1000) = 0.05325 (mol dm ⁻³)
□ 0.0405 / 05325
Allow ratio using moles as V cancels
NOTE can be subsumed in M4 | | | | M4 re-arranges K_a or pK_a expression correctly and substitutes appropriate values to find [H ⁺] (1) | | $[H^{+}] = 1.70 \times 10^{-5} \times (0.0405/0.05325) = 1.29 \times 10^{-5} \text{ (mol dm}^{-3})$ Or $pH=pKa - log([acid]/[base]) / pH= 4.77-log (0.0405/0.05325)$ | | | | M5 Calculation of pH | (1) | pH = 4.89 Correct answer with no working scores 5 marks Ignore SF except 1SF Allow TE throughout Comment 4.52 will score 4 (omission of subtraction) | | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|--|-----|---|------| | 20(b) (ii) | M4 (Large)/reconneid of CLL COOLL and CLL COOL | (1) | | 5 | | | M1 (Large) 'reservoir' of CH₃COOH and CH₃COO− | (1) | | | | | M2 The OH [−] ions react with CH ₃ COOH / H ⁺ ions | (1) | | | | | $M3 H^+ + OH^- \rightarrow H_2O$ | | If both equations given both | | | | or $CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$ | (1) | must be correct | | | | M4 The H⁺ ions react with CH₃COO [—] or | | If equation given must be | | | | H ⁺ +CH ₃ COO [−] ⇌ CH ₃ COOH | (1) | correct | | | | | | | | | | M5 The ratio of acid to base remains (almost) constant (1) | | Allow base/salt remains | | | | | | (almost) constant | | | | | | Allow [H ⁺] remains(almost) | | | | | | constant | | (Total for Question 20 = 20 marks) (Total for Section C = 20 marks) Total for Paper = 90marks