Please check the examination details b	elow before ente	ering your candidate information
Candidate surname		Other names
Pearson Edexcel International Advanced Level	entre Number	Candidate Number
Friday 17 Janu	ary 2	020
Afternoon (Time: 1 hour 20 minutes)	Paper R	eference WCH13/01
Chemistry International Advanced S Unit 3: Practical Skills in G		•
Candidates must have: Scientific o Ruler	alculator	Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- There is a Periodic Table on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions.

Write your answers in the spaces provided.

- 1 Tests were carried out on some pairs of compounds.
 - (a) (i) Bromine water was added to separate solutions of sodium chloride and sodium iodide.

State **one** different observation for each reaction.

(2)

odium chloride
odium iodide

(ii) Name a test, with the expected observation, to confirm the presence of the sodium ion in these compounds.

(2)

Test	Observation

(b) (i) Barium chloride solution and hydrochloric acid were added to separate aqueous solutions of ammonium sulfate and ammonium nitrate.

State what would be **seen** for each compound which would allow you to distinguish between them.

(2)

ammonium sulfate
ammonium nitrate

(ii)	Give a test, with the expected result, to confirm the presence of the
	ammonium ion (NH ₄ ⁺) in the ammonium compounds.

Test	Result

(c) (i) Acidified potassium dichromate(VI) solution was added to two test tubes each containing a different alcohol. The test tubes were placed in a warm water bath.

The alcohols were propan-1-ol and 2-methylpropan-2-ol.

State what would be **seen** for each alcohol which would allow you to distinguish between them.

(2)

(2)

propan-1-ol.....

2-methylpropan-2-ol

(ii) Give a **chemical** test, with the expected observation, to confirm the presence of the hydroxy group.

(2)

Observation

(d) Acidified potassium manganate(VII) solution was added to separate test tubes containing samples of hexane and hexene. The test tubes were shaken gently.

State what would be **seen** for each compound which would allow you to distinguish between them.

(2)

nexane..

havana

(Total for Question 1 = 14 marks)

2 A class of students carried out experiments to determine the enthalpy change for the reaction of magnesium metal with hydrochloric acid.

The following method was used.

- Step **1** A 1.00 m length of magnesium ribbon was cleaned using sandpaper, weighed and cut into 10 cm lengths.
- Step 2 50 cm³ of dilute hydrochloric acid (an excess) was placed into a polystyrene cup and the temperature measured.
- Step **3** A 10 cm length of magnesium ribbon was added to the hydrochloric acid. The solution was stirred gently and the maximum temperature recorded.

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

Results

Measurement	Value
Mass of 1.00 m of magnesium ribbon/g	0.86
Initial temperature of hydrochloric acid before addition of magnesium ribbon/°C	21.4
Final temperature of solution/°C	29.2

(a) (i) Calculate the number of moles of magnesium in the 10 cm length of ribbon used in this experiment. [A_r value: Mg = 24.3]

(2)

(ii) Calculate the enthalpy change for this reaction including a sign and units. Give your answer to an appropriate number of significant figures.

Data:

Specific heat capacity of the solution = $4.2 \,\mathrm{Jg^{-1} \, \circ C^{-1}}$

The density of the reaction mixture = $1.0 \,\mathrm{g \, cm^{-3}}$

(4)

(b) (i) The maximum uncertainty each time the thermometer was read was \pm 0.1 °C. Calculate the percentage uncertainty in measuring the temperature change in this experiment.

(1)

(ii) Suggest **one** way of reducing the percentage uncertainty in measuring the temperature change without changing the apparatus or just repeating the experiment. Justify your answer.

(2)

(c)	One student carried out the same experiment but used a glass beaker instead of a polystyrene cup.	
	State how this would affect the value of the enthalpy change obtained. Justify your answer.	
		(2)
(d)	Explain why the magnesium ribbon was cleaned with sandpaper before being weig	hed. (2)
	(Total for Question 2 = 13 mark	ks)

BLANK PAGE

An experiment was carried out to determine the purity of solid sodium carbonate, Na₂CO₃. The following procedure was used.

4.89 g of impure sodium carbonate was weighed and dissolved in distilled water.

The solution and washings were transferred to a 250.0 cm³ volumetric flask, and the liquid level made up to the mark with distilled water and the flask shaken.

A pipette was used to transfer 25.0 cm³ portions of the solution to conical flasks.

Each portion of the solution was then titrated with hydrochloric acid of concentration 0.200 mol dm⁻³.

$$Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(I) + CO_2(g)$$

(a) The indicator used was methyl orange. State the colour change at the end-point.

(2)

(b)

Results

Number of titration	1	2	3	4
Burette reading (final)/cm ³	27.55	26.25	28.30	26.15
Burette reading (start)/cm ³	0.00	0.05	1.05	0.05
Volume of HCl(aq)/cm³				

(i) Complete the table and, using appropriate titrations, calculate the mean titre.

(2)

(ii) Calculate the percentage purity, by mass, of the sodium carbonate.

(5)

(Total for Question 3 = 9 marks)

4		ane can be prepared by reacting ethanol with a mixture of sodium bromide ntrated sulfuric acid.	
	(a) Step 1	5 cm ³ of ethanol and 5 cm ³ of water are added to a round-bottomed flask. The flask is placed in an ice bath and 5 cm ³ of concentrated sulfuric acid is added slowly. During this process the flask is shaken gently.	
	Explain	why the sulfuric acid must be added slowly.	
			(2)
	(b) Step 2	6.0 g of solid potassium bromide is ground up into a fine powder using a pestle and mortar. The powder is then added to the round-bottomed flask containing the ethanol and concentrated sulfuric acid. The mixture is heated.	
	State w	hy the potassium bromide is ground up to a fine powder. Justify your answ	rer. (2)

- (c) Step 3 The crude bromoethane formed in Step 2 is distilled off.
 - (i) Draw a labelled diagram to show the apparatus suitable for this distillation. Include a thermometer but no clamps or stands.

(3)

(ii) State how anti-bumping granules prevent bumping in the distillation flask.

(1)

(d) Step **4** The distillate from Step **3** is transferred to a separating funnel where it separates into an aqueous layer and a layer containing impure bromoethane.

(i) State **two** physical properties of bromoethane that can be deduced from this diagram.

(2)

(ii) Describe how the aqueous layer could be removed from the separating funnel.

(1)

(e) Step 5 After removing the aqueous layer, sodium hydrogencarbonate solution is added to the impure bromoethane in a separating funnel and the two layers separated again. State why sodium hydrogencarbonate solution is added to the impure bromoethane. (1) (f) Step 6 The bromoethane is placed into a sample bottle and a drying agent is added. (i) Identify, by name or formula, a suitable drying agent. (1) (ii) Describe how the appearance of the bromoethane changes after the drying agent has been added and the mixture allowed to stand.		(Total for Question 4 = 14 marks)
is added to the impure bromoethane in a separating funnel and the two layers separated again. State why sodium hydrogencarbonate solution is added to the impure bromoethane. (1) (f) Step 6 The bromoethane is placed into a sample bottle and a drying agent is added. (i) Identify, by name or formula, a suitable drying agent.		ent has been added and the mixture allowed to stand.
is added to the impure bromoethane in a separating funnel and the two layers separated again. State why sodium hydrogencarbonate solution is added to the impure bromoethane.		ntify, by name or formula, a suitable drying agent.
is added to the impure bromoethane in a separating funnel and the two layers separated again.	State w	·
	,	is added to the impure bromoethane in a separating funnel and the two layers separated again.

TOTAL FOR PAPER = 50 MARKS

BLANK PAGE

BLANK PAGE

The Periodic Table of Elements

0 (8)	(18) 4.0 He hetium 2
7	
9	(13) (14) (15) (16) (17)
2	(15)
4	(14)
м	(13)
	1.0 H hydrogen Key
2	1.0 H hydrogen (2) Key

_																								•			
	4.0	He	2	20.2	N N	neon	10	39.9	Αŗ	argon	18	83.8	궃	krypton	36	131.3	Xe	xenon	54	[222]	몺	radon	98		ted		
			(17)	19.0	L	fluorine	9	35.5	บ	chlorine	17	6.62	Br	bromine	35	126.9	Ι	iodine	53	[210]	At	astatine	85		een repor		
			(16)	16.0	0	oxygen	8	32.1	S	sulfur	16	0.62	Se	selenium	34	127.6	<u>1</u>	tellurium	52	[506]	8	polonium	84		116 have b	iticated	
			(15)	14.0	z	nitrogen	7	31.0	۵	phosphorus	15	74.9	As			121.8	Sb	antimony	51	209.0	E	bismuth	83		Elements with atomic numbers 112-116 have been reported	but not fully authenticated	
			(14)	12.0	U	carbon	9	28.1	Si		14	72.6	g	germanium	32	118.7	Sn	ţį	50		Ъ				atomic nu	but not f	
			(13)	10.8	8	boron	5	27.0	¥	aluminium	13	2.69	Ga	_		114.8	Ч	indium	49	204.4	F	thallium	81		nents with		
			,							ć	(12)	65.4	Zn	zinc	30	112.4	ਨ	cadmium	48	9.002	Ę	mercury					
											(11)	63.5	J	copper	59	107.9	Ag	silver	47	197.0	Αn	plog	79	[272]	Rg	roentgenium	1
										Š	(10)	58.7	Ë	nickel	28	106.4	Pd	palladium	46	195.1	చ	platinum	78	[268] [271] [272]	Ds	darmstadtium	110
										ę	(6)	58.9	ပ	cobalt	27	102.9	格	rhodium	45	192.2			77	[368]	Mt	meitnerium	109
1.0	_	n hydrogen	_							Ć	(8)	55.8	Ā	iron	76	101.1	R L	ruthenium	44	190.2	ő	osmium	76	[277]	Ұ	hassium	108
										į	(/)	54.9	۸n	manganese	25	[86]	ည	technetium	43	186.2	æ			[594]	Bh	bohrium	107
				mass	lod		nmper			\$	(9)	52.0	ა	chromium	24 25	95.9	Wo	molybdenum	42 43	183.8	>	tungsten	74	[592]	Sg	seaborgium	106
			Key	relative atomic mass	atomic symbol	name	atomic (proton) number			į	(ç)	50.9	>	vanadium	23	92.9	Q	_		180.9	<u>ъ</u>	tantalum	73	[592] [592]	В	dubnium	105
				relati	ato		atomic			5	(4)	47.9	ï	titanium	22	91.2	Zr	zirconium	40	178.5	H	hafnium	72	[261]	Rf	utherfordium	104
										Ć	(3)	45.0		scandium	21	88.9	>	yttrium	39	138.9	Ľa*	lanthanum	22	[227]	Ac*	_	88
			(2)	9.0	Be	beryllium	4	24.3	Mg	magnesium	12	40.1	Ca	calcium	70	9.78	Ş	strontium	38	137.3			26	[977]	Ra	radium	88
			(1)	6.9	<u>'</u>	lithium	3	23.0		_	11	39.1	¥	potassium	19	85.5	&	rubidium	37	132.9	ర	caesium	22	[223]	፫	francium	87

^{*} Lanthanide series

^{*} Actinide series

Pr Prascodymiun 59 [231] Pa protactinium 91
