| Please check the examination details below | v before entering your candidate information | |---|--| | Candidate surname | Other names | | Pearson Edexcel nternational Advanced Level | re Number Candidate Number | | Thursday 7 Nov | ember 2019 | | Morning (Time: 1 hour 15 minutes) | Paper Reference WCH06/01 | | Chemistry | | | Advanced Unit 6: Chemistry Laborato | ry Skills II | | Candidates must have: Scientific cal | Culator Total Marks | | | | ## Instructions - Use **black** ink or **black** ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. ## Information - The total mark for this paper is 50. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling. - A Periodic Table is printed on the back cover of this paper. ### **Advice** - Read each question carefully before you start to answer it. - Show all your working in calculations and include units where appropriate. - Check your answers if you have time at the end. Turn over ▶ # Answer ALL the questions. Write your answers in the spaces provided. - 1 A pale green crystalline solid **A** contains two cations and one anion. - (a) When **A** is warmed with aqueous sodium hydroxide, a gas is evolved that turns damp red litmus paper blue. - (i) Identify, by name or formula, the gas evolved. (1) (ii) Give the name or formula of the cation in **A** that is identified by this test. (1) (b) A dissolves in distilled water to form a very pale green solution B. **B** reacts with aqueous sodium hydroxide to form a green precipitate, which turns into a brown solid **C**, on standing in air. (i) Give the name or formula of the cation in **B** that is identified by this test. (1) (ii) Identify, by name or formula, the brown solid **C**. (1) (c) **B** gives a white precipitate when aqueous barium chloride acidified with dilute hydrochloric acid is added. Give the name or formula of the anion in **B** that is identified by this test. (1) (d) Suggest the **formula** of solid **A**. Do not include any water of crystallisation. (1) (e) A sample of 0.025 mol of solid **A** with a mass of 9.80 g is heated gently to remove the water of crystallisation and leave 0.025 mol of the anhydrous solid. The mass of anhydrous solid is 7.10 g. Calculate the number of moles of water of crystallisation combined with 1 mol of the anhydrous solid. (2) (Total for Question 1 = 8 marks) - **2 W** is a white solid with the molecular formula $C_9H_8O_2$. - (a) A series of tests is carried out on **W**. Complete the table. | Test | Observation | Inference | | |---|--|-----------------------------|-----| | (i) Ignite a sample of W | Very smoky flame | W could be an alkene | | | | | or | (1) | | | | compound | | | (ii) Add a little W to bromine water and shake the mixture | Yellow solution turns into a colourless solution | W contains the | (1) | | | | group | | | (iii) Heat W until it melts then add | Steamy fumes form | W contains the | | | phosphorus(V) chloride | | | (1) | | | | group | | | (iv) Heat W until it melts then add solid | Bubbles of carbon dioxide form | W contains the | | | | | group | (2) | (b) Complete the table, which contains information about the mass spectrum of ${\bf W}$. | Peak | Inference | | |-----------------------------------|--|-----| | (i) A peak occurs at $m/e =$ | The peak is due to C ₆ H ₅ | (1) | | (ii) A peak occurs at $m/e = 103$ | The peak is due to an ion with the formula | (1) | | (c) | The low resolution proton nmr spectrum of W has four peaks each with | |-----|--| | | relative area 1 and two peaks each with relative area 2. | (i) State the number of proton environments in **W**. (1) (ii) State what can be deduced from the relative peak areas. (1) (d) **W** exists as two geometric isomers. Use all the information in this question to deduce the structure of **one** of these isomers. (2) (Total for Question 2 = 11 marks) - **3** A student used two methods to determine the concentration of vanadium(III) ions in an aqueous solution **X**. - (a) Method 1 used a titration procedure. 10.0 cm³ of **X** was titrated with 0.0400 mol dm⁻³ acidified potassium manganate(VII). The equation for the reaction is $$5V^{3+}(aq) + 2MnO_4^{-}(aq) + 2H_2O(I) \rightarrow 5VO_2^{+}(aq) + 2Mn^{2+}(aq) + 4H^{+}(aq)$$ The results of four titrations are shown. | Titration | Rough | 1 | 2 | 3 | |-------------------------------|-------|-------|-------|-------| | Final burette reading/cm³ | 21.10 | 41.30 | 19.85 | 20.10 | | Initial burette reading/cm³ | 0.50 | 21.10 | 0.25 | 0.00 | | Titre/cm ³ | | | | 20.10 | | Titres used to calculate mean | | | | | (i) Complete the table and calculate the mean titre. Show which titres you have used in your calculation by putting a tick (✓) in the appropriate boxes in the table. (2) Mean titre = cm³ (ii) Calculate the concentration, in $mol\,dm^{-3}$, of $V^{3+}(aq)$ ions in solution **X**. Give your answer to **three** significant figures. (3) (iii) Each burette reading was accurate to $\pm 0.05\,\text{cm}^3$. Calculate the percentage uncertainty in the titre value for Titration 3. (1) (b) Method 2 used an electrochemical cell. An electrochemical cell was made from the electrode systems represented by these half-equations: $$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$$ $$V^{3+}(aq) + e^- \rightleftharpoons V^{2+}(aq)$$ The E_{cell} value was measured using the apparatus shown. Solution **Y** was made by mixing $50\,\text{cm}^3$ of an aqueous solution of V^{2+} ions with $50\,\text{cm}^3$ of the same solution **X** as used in **Method 1**. (i) Complete the diagram by adding labels on the dotted lines provided. Conditions are not required. (4) (ii) The salt bridge consisted of a strip of filter paper soaked in a saturated solution of potassium nitrate. Give a reason why potassium hydroxide solution should **not** be used for the salt bridge. (1) (iii) In this cell, the zinc half-cell was at standard temperature and concentration. When the cell reaction occurred, the zinc was oxidised and $E_{cell} = +0.44$ V. Write the overall equation for the cell reaction. State symbols are not required. (1) (iv) The standard electrode potential, E^{\ominus} , for the $Zn^{2+}(aq)|Zn(s)$ half-cell = -0.76V. The $V^{3+}(aq)|V^{2+}(aq)$ half-cell was **not** at standard concentration in this experiment. Calculate the electrode potential, E, for the $V^{3+}(aq)|V^{2+}(aq)$ half-cell in this experiment. (1) (v) The **standard** electrode potential, E^{\ominus} , for the $V^{3+}(aq) | V^{2+}(aq)$ half-cell = -0.26V. Solution **Y** was 1 mol dm⁻³ with respect to $V^{2+}(aq)$. For the half-cell in this experiment, the electrode potential is given by $$E = E^{\oplus} + 0.059 \log [V^{3+}(aq)]$$ Use this, and your answer to (b)(iv), to calculate the concentration of $\,V^{3+}(aq)\,$ in solution $\,Y$. You $\,$ must show your working. (2) | | (Total for Question 3 = 16 mar | | |---|---|-----| (1) | | I | Explain why these two values were different. | (1) | | | The concentration of $V^{3+}(aq)$ obtained in (a)(ii) was approximately double that obtained in (b)(v). | | | | | | 4 This question is about the preparation of iodobenzene from phenylamine, and its purification. The preparation occurs in two steps. phenylamine benzenediazonium chloride iodobenzene Some data about phenylamine and iodobenzene are given in the table. | Compound | Molar mass
/g mol ⁻¹ | Density
/g cm ⁻³ | Boiling temperature / °C | |-------------|------------------------------------|--------------------------------|--------------------------| | Phenylamine | 93.0 | 1.02 | 184 | | lodobenzene | 203.9 | 1.83 | 188 | (a) In Step **1** of the preparation, phenylamine is converted into benzenediazonium chloride. Give the reagents and condition for Step **1**. | - 1 | ľ | ø | 'n | ١ | |-----|---|---|----|---| | - (| l | d | 4 | | |
 |
 |
 | |------|------|------| (b) In Step **2** of the preparation, aqueous potassium iodide is added slowly to the reaction mixture from Step **1**. The mixture is left to stand for 10 minutes and then it is heated for 20 minutes. The iodobenzene formed is steam distilled from the mixture. (i) Suggest a reason why the aqueous potassium iodide is added slowly. (1) (ii) The apparatus used for steam distillation is shown. Complete the labelling of the diagram, A, B, C and D. (3) |
 | |------|------|------|------|------|------|------|------|--|
 | (iii) State the purpose of the part of the apparatus labelled E . | (1) | |---|-----| | | | | (iv) The distillate collected contains iodobenzene and water. | | | Describe how iodobenzene is obtained from the distillate. | | | [Refer to the data given at the start of Question 4] | (2) | | | | | | | | (v) The iodobenzene obtained from the distillate is a cloudy liquid. | | | Name a substance that should be added to make the liquid clear. | (1) | | | | | (vi) The clear liquid is distilled to obtain pure iodobenzene. | | | Give a suitable temperature range for collecting the pure iodobenzene. | | | [Refer to the data given at the start of Question 4] | (1) | | | | (c) This preparation and purification process has an expected yield of 70%. Calculate the **volume** of phenylamine needed to produce 25.0 cm³ of iodobenzene. [Refer to the data given at the start of Question 4] (4) (Total for Question 4 = 15 marks) **TOTAL FOR PAPER = 50 MARKS** # **BLANK PAGE** # The Periodic Table of Elements 4.0 He helium 0 (8) (18) 9 2 ç: **≖** : | | _ | _ | | | _ | _ | | | | | | | | | | | | | | _ | | | | | |----------|------|----------------------|---------------|-----------|------------------------|------|----|------------------|------|----|-----------|----|-------|----------|------------|----|-------|--------------|-----------|----|-------|---|-------------------------------------|-----| | helium | 2 | 20.2 | Ne | neon | 10 | 39.9 | Αľ | argon
18 | 83.8 | 궃 | krypton | 36 | 131.3 | Xe | xenon | 24 | [222] | R | radon | 98 | | ted | | | | | (17) | 19.0 | ш | fluorine | 6 | 35.5 | บ | chlorine
17 | 79.9 | Br | bromine | 35 | 126.9 | Ι | iodine | 53 | [210] | Αt | astatine | 85 | | een repor | | | | | (16) | 16.0 | 0 | oxygen | 8 | 32.1 | S | sulfur
16 | 79.0 | Se | selenium | 34 | 127.6 | <u>Б</u> | tellurium | 52 | [506] | S
C | polonium | 84 | | 116 have b | ticated | | | | (15) | 14.0 | z | nitrogen | 7 | 31.0 | ۵ | phosphorus
15 | 74.9 | As | arsenic | 33 | 121.8 | Sb | antimony | 51 | 209.0 | Bi | bismuth | 83 | | nbers 112- | but not fully authenticated | | | | (14) | 12.0 | U | carbon | 9 | 28.1 | Si | | 72.6 | ge | germanium | 32 | 118.7 | Sn | tin | 20 | 207.2 | P | lead | 82 | | Elements with atomic numbers 112-116 have been reported | but not fu | | | | (13) | 10.8 | В | poron | 5 | 27.0 | Ι | aluminium
13 | 69.7 | Ga | gallium | 31 | 114.8 | Г | indium | 49 | 204.4 | F | thallium | 81 | | ents with | | | | | | | | | | | | (12) | 65.4 | Zu | zinc | 30 | 112.4 | В | cadmium | 48 | 200.6 | H | mercury | 80 | | Elem | | | | | | | | | | | | (11) | 63.5 | ŋ | copper | 56 | 107.9 | Ag | silver | 47 | 197.0 | Αn | plog | 79 | [272] | Rg | oentgenium | # | | | | | | | | | | (10) | 58.7 | 'n | nickel | 28 | 106.4 | Pd | palladium | 46 | 195.1 | £ | platinum | 78 | [271] | Ds | meitnerium darmstadtium roentgenium | 110 | | | | | | | | | | (6) | 58.9 | ပိ | cobalt | 27 | 102.9 | R | rhodium | 45 | 192.2 | <u>1</u> | iridium | 77 | [568] | Mt | meitnerium | 109 | | hydrogen | - | | | | | | | (8) | 55.8 | Fe | iron | 56 | 101.1 | Ru | ruthenium | 44 | 190.2 | õ | osmium | 76 | [277] | Ұ | _ | 108 | | | _ | | | | | | | (7) | 54.9 | Wn | manganese | 25 | [86] | ည | technetium | 43 | 186.2 | Re | rhenium | 75 | [564] | Bh | bohrium | 107 | | | | mass | pol | | umber | | | (9) | 52.0 | ე | chromium | 24 | 95.9 | Wo | molybdenum | 42 | 183.8 | > | tungsten | 74 | [596] | Sg | seaborgium | 106 | | | Key | relative atomic mass | atomic symbol | name | atomic (proton) number | | | (5) | 50.9 | > | vanadium | 23 | 92.9 | P | niobium | 41 | 180.9 | Тa | tantalum | 73 | [292] | Db Sg | dubnium | 105 | | | | relati | ato | | atomic | | | (4) | 47.9 | ï | titanium | 22 | 91.2 | Zr | zirconium | 40 | 178.5 | Ŧ | hafnium | 72 | [261] | R | rutherfordium | 104 | | | | | | | | | | (3) | 45.0 | Sc | scandium | 21 | 88.9 | > | yttrium | 39 | 138.9 | ۲a* | lanthanum | 22 | [227] | Ac* | actinium | 88 | | | (2) | 9.0 | Be | beryllium | 4 | 24.3 | Wg | magnesium
12 | 40.1 | Ca | calcinm | 20 | 97.6 | Sr | strontium | 38 | 137.3 | Ba | barium | 56 | [526] | Ra | radium | 88 | | | (1) | 6.9 | :5 | lithium | 3 | 23.0 | Na | sodium
11 | 39.1 | ¥ | potassium | 19 | 85.5 | æ | rubidium | 37 | 132.9 | S | caesium | 22 | [223] | 뇬 | francium | 87 | * Lanthanide series * Actinide series | 173 | - AP | ytterbium | 70 | [254] | N
L | nobelium law | 102 | |----------|---------|--------------|----|-------|--------|--------------|-----| | 91 169 | r
Tm | _ | _ | ⊩ | h Md | Ě | _ | | | Ho Er | _ | _ | ⊩ | Es Fm | _ | _ | | | Dy | <u>-</u> | | ⊩ | Ç | II
ei | _ | | 159 | Ъ | terbium | 65 | [242] | 쓢 | berkelium | 62 | | 157 | РS | ő | | [247] | Ë | anium | 96 | | 152 | En | europium | 63 | [243] | Am | americium | 95 | | 150 | Sm | samarium | 62 | [242] | Pu | plutonium | 94 | | [147] | Pm | promethiun | 61 | [237] | Α | neptunium | 93 | | 144 | PN | neodymium | 09 | 238 | _ | uranium | 92 | | 141 | P | praseodymium | 29 | [231] | Pa | protactinium | 91 | | 140 | S | cerium | 28 | 232 | 두 | thorium | 90 |