Please check the examination deta	ails below	before entering yo	our candidate information
Candidate surname		Othe	r names
Pearson Edexcel nternational Advanced Level	Centre	Number	Candidate Number
Tuesday 22 O	cto	ber 20	019
Morning (Time: 1 hour 20 minute	es)	Paper Refere	nce WCH13/01
Chemistry International Advance Unit 3: Practical Skills i		•	vel
Candidates must have: Scienti	ific calc	ulator	Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- There is a Periodic Table on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions.

Write your answers in the spaces provided.

- 1 A series of tests is carried out on a solid compound **A** and an aqueous solution **B**.
 - (a) Compound A contains one cation and one anion.

Complete the inferences.

(i) A flame test is carried out on A.

(1)

Observation	Inference
Yellow flame colour	The formula of the cation in A is

(ii) A small amount of solid **A** is placed in a test tube and heated strongly. A glowing splint is held in the mouth of the test tube.

Observation	Inference
The glowing splint relights	The gas formed is
	The formula of the anion in A could be

(b) A series of tests is carried out on aqueous solution **B**.

Complete the inferences.

(i) A piece of magnesium ribbon is added to $5\,\mathrm{cm}^3$ of **B** in a test tube.

A lighted splint is held over the mouth of the test tube.

(2)

Observation	Inference
Bubbles of gas are given off	The gas is
The gas burns with a squeaky pop	
	The formula of the cation in B is

(ii) Silver nitrate solution acidified with dilute nitric acid is added to another 5 cm³ of **B** in a test tube.

(2)

Observation	Inference
White precipitate forms	The name or formula of the precipitate is
	The name or formula of solution B is

(Total for Question 1 = 7 marks)

- 2 Tests are carried out to identify three organic liquids, C, D and E.
 - (a) A spatula measure of phosphorus(V) chloride, PCI₅, is added to each liquid in separate test tubes.

Any gas given off is tested with damp blue litmus paper.

Observation		
С	D	E
Misty fumes are given off	Misty fumes are given off	No change
Damp blue litmus paper turns red	Damp blue litmus paper turns red	

Identify, by name or formula, the misty fumes produced by liquids **C** and **D**.

(1)

(b) 2 cm³ of aqueous sodium carbonate, Na₂CO₃(aq), is added to each liquid in separate test tubes.

Any gas given off is tested with limewater.

Observation		
C	D	E
Bubbles of a colourless gas are given off	No change	No change
Limewater turns cloudy		

Identify, by name or formula, the gas produced by liquid **C**.

(1)

- (c) Each of the compounds **C**, **D** and **E** contains three carbon atoms and one functional group, which is on the end of the carbon chain.
 - (i) Using this information and the results from parts (a) and (b), deduce the structures of **C** and **D**.

(2)

Structure of C	Structure of D

(ii) The mass spectrum of **E** has a molecular ion peak at m/z = 58. Using this information and the information in (c), deduce the structure of **E**.

(1)

Structure of E

(iii) Give a chemical test and its positive result to confirm the identity of the functional group in **E**.

(d) The apparatus shown was used to find the enthalpy change of combustion of one of the liquids **C**, **D** or **E**.

(i) List all the measurements you would make in carrying out this experiment.

(3)

(ii) Give **two** ways, other than changing the measuring instruments or repeating the experiment, in which the accuracy of the results using this apparatus could be improved.

(2)

(Total for Question 2 = 12 marks)

3 An experiment is carried out to determine the formula of an oxide of copper.

A sample of the copper oxide is reduced to copper by hydrogen gas using the apparatus shown.

Procedure

- Step 1 Weigh the empty test tube.
- Step 2 Place two spatula measures of copper oxide in the test tube and reweigh.
- Step **3** Pass hydrogen into the test tube and, after a delay of a few seconds, light the gas at the hole at the end of the test tube.
- Step 4 Start heating the copper oxide.
- Step **5** After the copper oxide has been completely reduced, turn off the Bunsen burner, but continue to pass hydrogen over the product until it has cooled down.
- Step 6 Weigh the test tube and copper.
- (a) Give a reason why, in Step 3, there should be a delay of a few seconds before lighting the hydrogen at the end of the test tube.

(1)

(b) (i) Complete the table of results.

(1)

Measurement	Mass/g
Mass of test tube	40.27
Mass of test tube and copper oxide	43.42
Mass of test tube and copper	42.79
Mass of copper in copper oxide	
Mass of oxygen in copper oxide	

(ii) Use these results to calculate the formula of this copper oxide.

You must show your working.

[A_r values: Cu = 63.5 O = 16.0]

(3)

(c) The experiment was repeated. However, in Step 5 , both the Bunsen burner and the hydrogen supply were turned off while the apparatus cooled.	
(i) State how the appearance of the solid in the test tube changes as the apparatus cools.	(1)
(ii) Explain how this change in the procedure affects the calculated formula of the copper oxide.	ne (2)
(Total for Question 3 = 8 m	narks)

4	An experiment is carried out to determine the molar mass of a solid acid, H_2X .			
	(a) Describe how 250.0 cm 3 of a standard solution should be prepared using a pre-weighed sample of 1.13 g of H_2X .	(4)		

(b) $25.0\,\mathrm{cm^3}$ of this $\mathrm{H_2X}$ solution was pipetted into a conical flask and titrated with $0.213\,\mathrm{mol}\,\mathrm{dm^{-3}}$ sodium hydroxide solution.

The equation for the reaction is

$$H_2X(aq) + 2NaOH(aq) \rightarrow Na_2X(aq) + 2H_2O(I)$$

(i) The indicator used was phenolphthalein.

State the colour **change** at the end-point.

(1)

Results

Number of titration	1	2	3
Final burette reading/cm ³	12.20	24.10	11.75
Initial burette reading/cm ³	0.00	12.20	0.05
Volume of NaOH used/cm ³	12.20	11.90	11.70

(ii) Using appropriate titrations, calculate the mean titre in cm³.

(1)

(iii) Calculate the number of moles of H₂X in the 250.0 cm³ of solution.

(3)

(iv) Calculate the molar mass of H_2X , using your answer in (b)(iii) and the mass of H_2X given.

Give your answer to an appropriate number of significant figures.

(c)	The maxim	um uncertainty e	ach time a	burette is reac	$1 \text{ is } \pm 0.05 \text{ cm}^3$.
-----	-----------	-------------------------	-------------------	-----------------	---

(i)	Calculate the percentage uncertainty in measuring the 11.70 cm ³ of
	sodium hydroxide used in titration 3 .

(1)

(ii) The percentage uncertainties in the three titrations are similar.

Suggest how the percentage uncertainty in a burette measurement could be reduced, without changing the apparatus.

Justify your answer.

r	9	1
	/	
U	$\overline{}$,

|
 |
|------|------|------|------|------|------|------|------|------|------|------|
|
 |
|
 |
|
 |
| | | | | | | | | | | |

(Total for Question 4 = 14 marks)

- **5** Limonene, an oil, can be extracted from oranges in four steps.
 - (a) In Step **1**, grated orange peel is added to some distilled water. The mixture is heated under reflux for about 10 minutes.

Draw a labelled diagram of the apparatus used to reflux the mixture.

(3)

(b) In Step 2 the mixture from Step 1 is distilled. The distillate contains a mixture of limonene and water.

In Step 3 the limonene and water mixture from Step 2 is poured into a separating funnel and pentane is added.

Limonene is much more soluble in pentane than in water.

The density of pentane is 0.626 g cm⁻³

(i) Complete the diagram of the separating funnel by drawing the aqueous and pentane layers and labelling them.

(1)

(ii)	Describe how t	he separating	funnel is	used to	obtain t	the pentane	layer.
------	----------------	---------------	-----------	---------	----------	-------------	--------

(c) In Step **4** the pentane is allowed to evaporate in a fume cupboard, leaving limonene.

150 mg of limonene is produced from 23.0 g of orange peel.

Calculate the percentage of limonene, by mass, extracted from the orange peel.

(1)

(d) 0.001 mol of limonene decolourised 0.32 g of bromine, Br₂.

Explain what these results tell you about the structure of limonene.

[Use
$$M_r$$
 (Br₂) = 160]

(2)

(Total for Question 5 = 9 marks)

TOTAL FOR PAPER = 50 MARKS

The Periodic Table of Elements

0 (8)	(18) 4.0 He helium 2	20.2 Ne
7	(17)	19.0 F
9	(16)	16.0
2	(15)	14.0 N
4	(14)	12.0 C
3	(13)	10.8 B
	1.0 H hydrogen 1	
	Key	relative atomic mass atomic symbol
		O 61
2	(2)	9.0 Be

			_						_
4.0 He helium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8	Kr krypton 36	131.3 Xe	xenon 54	[222]	Kn radon	98
(17)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9	Br bromine 35	126.9 I		[210]	as	85
(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0	Se selenium 34	127.6 Te	tellurium 52	[509]	Po	84
(15)	14.0 N nitrogen 7	31.0 P phosphorus 15	74.9	As arsenic 33		antimony 51	209.0	B1 bismuth	83
(14)	12.0 C carbon 6	28.1 Si siticon	72.6	Ge germanium 32	118.7 Sn	tin 50	۱.,		82
(13)	10.8 B boron 5	27.0 Al aluminium 13		Ga gallium 31	114.8 In		204.4	II thallium	81
		(12)	65.4	Zn zinc 30	112.4 Cd	cadmium 48	200.6	Hg mercury	80
		(11)	63.5	Cu copper 29	107.9 Ag	silver 47	197.0	Au gold	- 1
		(10)	58.7	Ni nickel 28	106.4 Pd	palladium 46	195.1	Pt platinum	78
		(6)	58.9	Co cobalt 27	102.9 Rh	rhodium 45	l~	Ε	77
H hydrogen		(8)	55.8	Fe iron 26	101.1 Ru	ruthenium 44	190.2	OSmium osmium	76
		(2)	54.9	Mn manganese 25	[98] Tc	technetium 43	186.2	Re rhenium	75
	mass bol number	(9)	52.0	Cr chromium 24	95.9 Mo	molybdenum 42	183.8	W tungsten	74
Кеу	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	V vanadium 23	92.9 Nb	niobium 41	180.9	la tantalum	73
	relat ato atomic	(4)	47.9	Ti titanium 22	91.2 Zr	zirconium 40	178.5	Ht hafnium	72
		(3)	45.0	Sc scandium 21	88.9 Y	yttrium 39	138.9	La* lanthanum	57
(2)	9.0 Be eryllium 4	24.3 Mg lagnesium 12	40.1	Ca calcium 20	87.6 Sr	trontium 38	137.3	ba barium	26

neon 10	39.9	Ar	argor	18	83.8	궃	kryptc	36	131.	Xe	xeno	54	[222			98		ted		
fluorine 9	35.5	ರ	chlorine	17	6.62	Br	bromine	35	126.9	Ι	iodine	53	[210]	At	astatine	85		Elements with atomic numbers 112-116 have been reported		
oxygen 8	32.1	S	sulfur	16	79.0	Se	selenium	34	127.6	<u>e</u>	tellurium	52	[506]	S	polonium	84		116 have !	nticated	
nitrogen 7	31.0	۵	phosphorus	15	74.9	As	arsenic	33	121.8	Sb	antimony	51	209.0	Bi	bismuth	83		mbers 112-	but not fully authenticated	
carbon 6	28.1	Si	silicon	14	72.6	ge	germanium	32	118.7	Sn			207.2	Ъ	lead	82		atomic nu	but not f	
boron 5	27.0	Ι	aluminium	13	69.7	Ga	gallium	31	114.8	ľ	indium	49	204.4	F	thallium	81		nents with		
				(12)	65.4	Zu	zinc	30	112.4	5	cadminm	48	200.6	H	mercury	80				
			;	(11)	63.5	J	copper	53	107.9	Ag		47	197.0	Αn	plog	79	[272]	Rg		11
			,	(10)	58.7	ï	nickel	28	106.4	Pq	palladium	46	195.1	చ	platinum	78	[271]		dan	110
			į	(6)	58.9	ပိ	cobalt	27	102.9	R	rhodium	45	192.2	<u>1</u>	iridium	77	[368]	Wt	meitnerium	109
			į	(8)	55.8			26	101.1	Ru	ruthenium	44	190.2	S	osmium	76		Hs		
			į	(2)	54.9	Cr	manganese	25	[86]	卢	technetium	43	186.2	Re	rhenium	75	[264]	Bh	bohrium	107
number			,	(9)	52.0	ъ	chromium	24	95.9	Wo	molybdenum technetium	42	183.8	>	tungsten	74	[596]	Sg	seaborgium	106
name atomic (proton) number			į	(2)	50.9	>	vanadium	23	92.9	g	niobium	41	180.9	Та	tantalum	73	[797]	8	dubniu	105
atomic			į	(4)	47.9	ï	titanium	22	91.2	Zr	zirconium	40	178.5	Ŧ	hafnium	72	[261]	¥	nutherfordium	104
			,	(3)	45.0	Sc	scandium	21	88.9	>	yttrium	39	138.9	Ľa*	lanthanum	22	[227]	Ac*	actinium	88
beryllium 4	24.3	Mg	magnesium	12	40.1	Ca	calcium	20	87.6	Sr	strontium	38	137.3	Ba	barium	56	[526]	Ra	radium	88
Lithium 3	23.0	Na	sodium	11	39.1	¥	potassium	19	85.5	ВЪ	rubidium	37	132.9	ర	caesium	22	[223]	ኯ	francium	87
_			_			_	_				_				_			_	_	_

^{*} Lanthanide series

^{*} Actinide series

140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
e O	Ā	P	Pm	Sm	Eu	В	Д	ò	운	ᆸ	Ħ	ХÞ	Γn
cerium	praseodymium neod	neodymium	promethium	samarinm	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
28	59	09	61	62	63	64	65	99	67	89	69	70	71
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
무	Pa	_	δ	Pu	Am	۳ ک	쌇	უ	Es	Fm	ΡW	٩	۲
horium	protactinium	uranium	neptunium	plutonium	americium	aurium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
90	91	92	93	94	92	96	4	86	66	100	101	102	103