Please check the examination det	ails below	before ente	ring your candidate information
Candidate surname			Other names
Pearson Edexcel International Advanced Level	Centre	e Number	Candidate Number
Tuesday 8 Oc	tok	er 2	2019
Afternoon (Time: 1 hour 30 minu	utes)	Paper Re	eference WCH11/01
Chemistry Advanced Subsidiary Unit 1: Structure, Bond Organic Chemi	_	and Intr	roduction to
Candidates must have: Scient	ific calc	ulator	Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

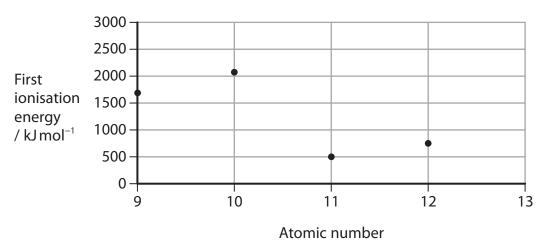
- 1 Which element is in the d-block of the Periodic Table?
 - A argon
 - **B** chlorine
 - C iron
 - **D** sodium

(Total for Question 1 = 1 mark)

- **2** What is the equation for the **third** ionisation energy of aluminium?
 - \square A Al(g) \rightarrow Al³⁺(g) + 3e⁻
 - \blacksquare **B** Al(s) \rightarrow Al³⁺(s) + 3e⁻
 - \square **C** $Al^{2+}(q) \rightarrow Al^{3+}(q) + e^{-}$
 - \square **D** $Al^{2+}(s) \rightarrow Al^{3+}(s) + e^{-}$

(Total for Question 2 = 1 mark)

3 The first three ionisation energies of carbon are shown.


	1st	2nd	3rd
Ionisation energy / kJ mol ⁻¹	1086	2353	4621

Which is the approximate fourth ionisation energy, in kJ mol⁻¹, of carbon?

- **B** 6200
- **☑ C** 11000
- **■ D** 38000

(Total for Question 3 = 1 mark)

4 The chart shows the first ionisation energy of each of the elements from fluorine to magnesium.

Which is the approximate first ionisation energy, in kJ mol⁻¹, of aluminium (atomic number 13)?

- **■ B** 600
- D 1200

(Total for Question 4 = 1 mark)

- **5** The decrease in first ionisation energy down Group 1 in the Periodic Table is caused by the **increase** in
 - **A** force of attraction between the nucleus and outer electron
 - **B** number of neutrons in the nucleus
 - □ C number of protons in the nucleus
 - **D** shielding of the outer electron from the nuclear charge

(Total for Question 5 = 1 mark)

6 What is the relative formula mass of hydrated ammonium iron(II) sulfate, $(NH_4)_2Fe(SO_4)_2.6H_2O$?

[Relative atomic masses (A_r): H = 1.0 N = 14.0 O = 16.0 S = 32.1 Fe = 55.8]

- **■ B** 302
- **C** 312

(Total for Question 6 = 1 mark)

7 How many **atoms** are there in 36.0 g of water?

[Avogadro constant = $6.02 \times 10^{23} \text{ mol}^{-1}$]

- \triangle **A** 3.010 × 10²³
- **B** 1.204×10^{24}
- \square **C** 2.408 × 10²⁴
- \square **D** 3.612 × 10²⁴

(Total for Question 7 = 1 mark)

8 Some ionic radii are shown.

lon	Ionic radius/nm
Na ⁺	0.102
K ⁺	0.138
F ⁻	0.133
Cl ⁻	0.180

Which compound has the strongest ionic bonding?

- A sodium fluoride
- B sodium chloride
- **C** potassium fluoride
- D potassium chloride

(Total for Question 8 = 1 mark)

- **9** In which pair are the ions isoelectronic?
 - \boxtimes **A** Ca²⁺ and S²⁻
 - \boxtimes **B** K⁺ and Br⁻

 - D Mg²⁺ and Cl⁻

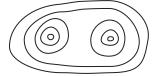
(Total for Question 9 = 1 mark)

- **10** The bonding **within** an ammonium ion, NH₄, is formed by

 - ☑ B covalent and dative covalent bonding only
 - **C** covalent and ionic bonding only
 - **D** covalent, dative covalent and ionic bonding

(Total for Question 10 = 1 mark)

- 11 Which diagram best represents the electron density map of a hydrogen chloride molecule?
 - X A


⊠ B

⊠ C

⊠ D

(Total for Question 11 = 1 mark)

12 What is the polarity of the Al—Cl bond and the polarity of a trigonal planar AlCl₃ molecule?

 \times \triangle

Α

В

⊠ C

⊠ D

Polarity of Al—Cl bond	Polarity of AlCl₃ molecule
non-polar	non-polar
non-polar	polar
polar	non-polar
polar	polar

(Total for Question 12 = 1 mark)

13 What is the atom economy, by mass, for the formation of iron in this reaction?

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

[A_r values: C = 12.0 O = 16.0 Fe = 55.8]

- A 29.7 %
- **B** 45.8%
- **∠ C** 55.9%
- ☑ D 71.7%

(Total for Question 13 = 1 mark)

14 A 2 kg sample of water contains 40 parts per million (ppm) by mass of nitrate ions.

What is the mass, in g, of nitrate ions in this sample?

- \triangle **A** 8 × 10⁻²
- **B** 5×10^{-5}
- \boxtimes **C** 8 × 10⁻⁵
- \triangle **D** 5 × 10⁻⁸

(Total for Question 14 = 1 mark)

15 A sample of hydrated calcium sulfate, $CaSO_4$.**x** H_2O , was heated to constant mass. 3.405 g of anhydrous calcium sulfate and 0.900 g of water were formed.

What is the value of \mathbf{x} ?

[Relative formula mass: $CaSO_4 = 136.2$]

- **△ A** 0.5
- **B** 2
- **区** 3
- \square D 4

(Total for Question 15 = 1 mark)

16 During a cracking reaction, each molecule of an alkane with formula C₁₀H₂₂ formed only two molecules of ethene and one molecule of hydrocarbon **A**.

What is the molecular formula of **A**?

- \square A C_6H_{10}
- B C₆H₁₄
- \square **D** C_8H_{18}

(Total for Question 16 = 1 mark)

17 Curly arrows are used in reaction mechanisms.

The curly arrow shown represents the movement of

- A an electron from a bond to an atom, forming free radicals
- **B** an electron from a bond to an atom, forming ions
- C a pair of electrons from a bond to an atom, forming free radicals
- **D** a pair of electrons from a bond to an atom, forming ions

(Total for Question 17 = 1 mark)

18 The structure of a diene is shown.

$$C=C$$
 H
 $C=C$
 H

How many σ bonds and π bonds are there in one molecule of this diene?

		σ bonds	π bonds
X	A	7	2
X	В	7	4
X	C	9	2
X	D	9	4

(Total for Question 18 = 1 mark)

19 When hydrogen bromide, HBr, reacts with propene, a higher percentage of 2-bromopropane forms than 1-bromopropane.

Which is the best explanation for this?

- ☑ A 1-bromopropane is more stable than 2-bromopropane
- **B** 2-bromopropane is more stable than 1-bromopropane
- ☑ C a primary carbocation is more stable than a secondary carbocation
- a secondary carbocation is more stable than a primary carbocation

(Total for Question 19 = 1 mark)

20 Propene, C₃H₆, is produced in the dehydration of propanol.

$$C_3H_7OH \rightarrow C_3H_6 + H_2O$$

What is the mass, in g, of propene formed from 3.42 g of propanol when the yield is 85.2 %?

[Relative molecular masses (M_r): $C_3H_7OH = 60$ $C_3H_6 = 42$]

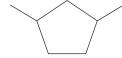
- **B** 2.39
- **∠ C** 2.91
- **D** 4.16

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions.


Write your answers in the spaces provided.

- **21** This question is about cycloalkanes.
 - (a) When alkanes from crude oil are reformed, the products include cycloalkanes.

Write the equation for reforming hexane into cyclohexane using **skeletal** formulae for the organic compounds.

(2)

(b) The skeletal formula of cycloalkane **D** is shown.

(i) Give the name of **D**.

(1)

(ii) Give the molecular formula of **D**.

(1)

(c)	There are four structural isomers of C_6H_{12} with a ring of four carbon atoms.
	One of these isomers is shown, in the first box.
	Complete the skeletal formulae of the other three isomers.

(d) A cycloalkane, \mathbf{E} , has a molar mass of $126 \,\mathrm{g}\,\mathrm{mol}^{-1}$.

Deduce the molecular formula of **E**.

(1)

(2)

(e) A sample of gaseous cyclopentane with a volume of 25 cm³ was mixed with 250 cm³ of oxygen (an excess) and the mixture was ignited. Only gaseous products were formed.

$$2C_5H_{10}(g) + 15O_2(g) \rightarrow 10CO_2(g) + 10H_2O(g)$$

Calculate the volume of each gas remaining after the reaction.

All the gas volumes were measured at the same temperature and pressure.

(3)

(f) Cyclobutane, C_4H_8 , reacts with chlorine in sunlight. (i) Name the mechanism and type of reaction that is occurring.	(2)
(ii) Complete the equation for the initiation step of this reaction mechanism. Include appropriate curly arrows. Cl——Cl →	(2)
(iii) Write the equations for the two propagation steps to form chlorocyclobutane. Use C₄H ₈ as the formula for cyclobutane. Curly arrows and state symbols are not required.	(2)
(iv) A small amount of a hydrocarbon forms in this reaction. Deduce the skeletal formula of this hydrocarbon. Justify your answer. Skeletal formula of product	(2)
Justification	
(Total for Question 21 = 18 ma	rks)

- 22 This question is about atomic structure and gases.
 - (a) Chlorine exists as two isotopes with mass numbers 35 and 37.
 - (i) State the number and type of each of the particles in the **nucleus** of a chlorine-35 atom.

(2)

(ii) Complete the electronic configuration of a chloride **ion**, Cl⁻, using the s, p, d notation.

(1)

1s².....

(iii) A sample of chlorine contains 75.53% of chlorine-35 atoms.

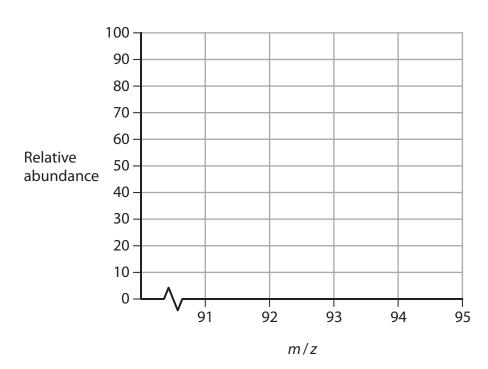
Calculate the relative atomic mass of this sample of chlorine. Give your answer to **two** decimal places.

(2)

(b) Fluorine has one naturally occurring isotope with mass number 19.

Chlorine and fluorine react to form chlorine trifluoride, ClF₃.

(i) Draw a dot-and-cross diagram to show the bonding in a molecule of chlorine trifluoride.Show the outer shell electrons only.


(2)

(ii) State, in terms of electrons, what is unusual about the dot-and-cross diagram you have drawn.

(1)

(iii) Complete the mass spectrum to show the peaks you would expect for the molecular ion ${\sf ClF}_3^+$.

(3)

(iv) Calculate, using the ideal gas equation, the volume in \mathbf{cm}^3 occupied by 0.0200 mol of ClF₃ gas at a temperature of 60 °C and a pressure of 1.28 \times 10⁵ Pa. Give your answer to an appropriate number of significant figures.

$$[pV = nRT R = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}]$$

(4)

(Total for Question 22 = 15 marks)

- 23 This question is mainly about alkenes.
 - (a) A few drops of bromine water are added to separate test tubes of propane and propene and the mixtures are shaken.

Describe what is seen at the end of each experiment.

(2)

Propane _____

Propene

- (b) Give the reagents and conditions for each of these conversions.
 - (i) $CH_2 = CH_2 \rightarrow CH_3CH_2OH$

(1)

(ii) $CH_2 = CH_2 \rightarrow CH_2OHCH_2OH$

(1)

(c) Draw the structure of *Z*-3-methylpent-2-ene.

(1)

(d) Exactly 720 cm³ of hydrogen gas, measured at room temperature and pressure (r.t.p.), reacted with 0.010 mol of an alkene to form an alkane.

Deduce the number of double bonds in one molecule of the alkene. You **must** show your working.

[Molar volume of gas at r.t.p. = $24\ 000\ cm^3\ mol^{-1}$]

(2)

(e) A student drew a mechanism for the addition of bromine to ethene.

Describe the three changes needed to correct this student's mechanism.

(3)

Change 1

Change 2.....

Change 3

(f) Part of the structure of a polymer is shown.

Draw the structure of the monomer used to make this polymer.

(1)

(Total for Question 23 = 11 marks)

24	Thi	s qu	ıestioı	n is abo	ut phos	ohorus a	and som	ne of its	compo	unds.			
	(a)	The	e aton	nic num	ber of p	hospho	rus is 15	5.					
		(i)			e electro boxes n			on of a	phospho	orus aton	n using the	e	(1)
			[Ne]										(1)
				3s			3р						
		(ii)	Expla	in why	the first	ionisatio	on ener	gy of pl	nosphor	us is grea	ter than t	hat of su	ılfur. (2)
	(b)				a meltir				•				
		Exp	olain v	vhy the	melting	temper	ature of	f phosp	horus is	much lov	wer than t	hat of si	licon. (3)

- (c) Phosphorus(V) chloride, PCl₅, exists as covalent molecules in the gaseous state.
 - (i) Complete the table for a PCl₅ molecule.

(3)

Number of bonding pairs of electrons on phosphorus	
Number of lone pairs of electrons on phosphorus	
Shape of molecule	
Cl—P—Cl bond angles	

(ii) In the solid state, phosphorus(V) chloride is ionic.

The cation and anion each have one phosphorus atom but a different number of chlorine atoms.

The cation is tetrahedral and the anion is octahedral.

Predict the formula of each ion. Include the charge on each ion.

(2)

(d) In an experiment, $8.00\,\mathrm{cm^3}$ of $0.250\,\mathrm{mol\,dm^{-3}}$ sodium hydroxide, NaOH, reacted completely with $10.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol\,dm^{-3}}$ phosphoric acid, $\mathrm{H_3PO_4}$.

Use these data to deduce the balanced equation for this reaction. You **must** show your working.

(3)

(e) Hydrated magnesium phosphate has the formula $Mg_3(PO_4)_2$. $\mathbf{y}H_2O$.

A sample of this compound contains 78.5% by mass of anhydrous magnesium phosphate.

Deduce the value of **y**.

You **must** show your working.

[Molar mass of anhydrous magnesium phosphate, $Mg_3(PO_4)_2 = 262.9 \,\mathrm{g}\,\mathrm{mol}^{-1}$]

(2)

(Total for Question 24 = 16 marks)

TOTAL FOR SECTION B = 60 MARKS
TOTAL FOR PAPER = 80 MARKS

No Lr nobelium lawrencium

103

102

101

100

66

86

6

96

95

94

93

92

9

8

uranium

protactinium

thorium

238 **U**

[231] Pa

232 **Th**

berkelium [245] **BK**

> E aurium

[247] 49

mendelevium

fermium Fm [253]

Cf Es Californium einsteinium

[257]

[254]

[256] PW

Tm thulium 69

89

67

99

65

63

62

61

9

29

28

	9
	2
	4
	m
The Periodic Table of Elements	

0 (8)

/

					Т				Т							_								_	ı																	
	(18)	4.0	H _.	netium 2	20.2	Ne	neon	10	39.9	Ar	argon	18	83.8	궃	krypton	36	131.3	Xe	xenon	24	[222]	R	radon	98		ted																
	•			(17)	19.0	ш	fluorine	6	35.5	บ	chlorine	1	79.9	В	bromine	35	126.9	Ι	iodine	53	[210]	At	astatine	85		een repor			175	רם	Ξ											
				(16)	Sh Sh									Se	selenium	34	127.6	<u>a</u>	tellurium	52	[506]	8	polonium	84		116 have b	iticated		173	χ	ytterbium	1										
				(15)										1 1						51	209.0	Bi	bismuth	83		Elements with atomic numbers 112-116 have been reported	but not fully authenticated	169	169 Tm													
				(14)	12.0	U	carbon	9	28.1	Si	_	- 1	72.6	Ge	germanium	32	118.7	Sn	tin	50	207.2	Pb	lead	82		atomic nu	but not f		167	ū	erbium	,										
				(13)	10.8	В	boron	5	27.0	A	aluminium	13	69.7	Са	gallium	31	114.8	I	indium	49	204.4	F	thallium	81		ents with		165	유	holmium	,											
												(71)	65.4	Zn	zinc	30	112.4	<u>В</u>	cadmium	48	200.6	Ŧ	mercury	80					163	2	dysprosium holmium											
											(11)		63.5	n	copper	29	107.9	Ag	silver	47	197.0	Αn	plog	79	[272]	Rg	roentgenium	111	159	T	Ε	١,										
										(10)				(10)				Ë	nickel	28	106.4	Pd	palladium	46	195.1	£	platinum	78	_	Ds	Ē	110	157	В	gadolinium	``						
						(6)					(%)	58.9	ပ	cobalt	27	102.9	Rh	rhodium	45	192.2	Ļ	iridium	77	[568]	Mt	meitnerium	109	152	Eu	europium	. (
		<u>?</u> =	H hydrogen	-			(8)			(ø)	55.8	Fe	iron	26	101.1	Ru	ruthenium	4	190.2	Os	osmium	76	[277]	¥	hassium	108	150	Sm	samarium	,												
											6	$\mathbb{E} \left[\left[ight]$	54.9	Wn	chromium manganese	25	[86]	ည	molybdenum technetium	43	186.2	Re	rhenium	75	_		ğ	107	[147]	Pm	praseodymium neodymium promethium samarium europium											
					mass	relative atomic mass atomic symbol name atomic (proton) number		mass ool umber		mass bol umber		bol		loqu		lod	number				(7)	(ه)	52.0	ა	chromium	24	62.6	Wo	molybdenum	42	183.8	≯	tungsten	74	[592]	Sg	seaborgium	106	144	PN	neodymium	
				Key	ive atomic			ive atomic I mic sym	name	: (proton) r			ý	<u>(c)</u>	50.9	>	vanadium	23	92.9	g	niobium	41	180.9	٦	tantalum	73	_		Ε	105	141	P	praseodymium	2								
					relat	ato		atomic			9	(4)	47.9	ï	titanium	22	91.2	Zr	zirconium	40	178.5	Ŧ	hafnium	72	[261]	¥	nutherfordium	104	140	e e	_											
											(5)	(5)	45.0	Sc	scandium	21	88.9	>	yttrium	39	138.9	La*	lanthanum	22	[227]	Ac*	actinium	88		Se												
I				(2)	9.0	Be	beryllium	4	24.3	Mg	magnesium	12	40.1	Ca	calcium	20	97.6	Sr	strontium	38	137.3	Ba	barium	26	[526]	Ra	radium	88		* Lanthanide series	00:20	ACCILITION SELLES										
				(1)	6.9	ב	lithium	m	23.0	Na	_	7	39.1	¥	potassium	19	85.5	&	rubidium	37	132.9	ပ	caesium	22	[223]	ቷ	francium	87		* Lanth	*	ACCIII										
																												_														

^{*} Lanthanide series

7

^{*} Actinide series